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Chapter 1

Architectural and Design
Visualization Shader Library

1.1  About the Library

The mental ray architectural library contains a set of shaders designed for architectural and
design visualization.

The most important are the mia-material(-z), an easy to use all-around general purpouse
material, and the Physical Sun and Sky along with the portal light shaders.

The library also contains many other tools, like shaders for...

e ...creating render-time “rounded corners”.
e ...physically based camera exposure and depth-of-field.

e ..light-surfaces and environment blurring.

In standalone mental ray the shaders are added by including the “mi” declaration file and
linking to the library;

link "architectural.dll"
include "architectural.mi"

The library strictly requires mental ray version 3.6 or newer and will not function on earlier
releases of mental ray.
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1.2 Introduction

1.2.1 What is the mia_material?

The mental ray mia_material is a monolithic material shader that is designed to support most
materials used by architectural and product design renderings. It supports most hard-surface
materials such as metal, wood and glass. It is especially tuned for fast glossy reflections
and refractions (replacing the DGS material) and high-quality glass (replacing the dielectric
material).

The major features are:

e Easy to use - yet flexible. Controls arranged logically in a “most used first” fashion.
e Templates - for getting faster to reality.

e Physically accurate - the material is energy conserving, making shaders that breaks
the laws of physics impossible.

e Glossy performance - advanced performance boosts including interpolation, emulated
glossiness, and importance sampling.

e Tweakable BRDF"! - user can define how reflectivity depends on angle.

e Transparency - “Solid” or “thin” materials - transparent objects such as glass
can be treated as either “solid” (refracting, built out of multiple faces) or “thin” (non-
refracting, can use single faces).

e Round corners - shader can simulate “fillets” to allow sharp edges to still catch the
light in a realistic fashion.

e Indirect Illumination control - set the final gather accuracy or indirect illumination
level on a per-material basis.

e Oren-Nayar diffuse - allows “powdery” surfaces such as clay.

e Built in Ambient Occlusion - for contact shadows and enhancing small details.

e All-in-one shader - photon and shadow shader built in.

e Waxed floors, frosted glass and brushed metals... - ...all fast and easy to set up.

e Multiple outputs - when using mia_material_x

1Bidirectional Reflectance Distribution Function
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1.2.2 mental ray 3.6 enhancements and mia_material x

The material comes in two variants, the mental ray 3.5 compatible mia_material and the new
extended mia_material_z. These are just two different interfaces using the same underlying
code, so the functionality is identical, except that mia_material_z...

e ..has some additional parameters relating to bump mapping described on page 38.

e ...supports setting ao_do_details to 2 for enabling “ambient occlusion with color bleed”
(see page 30).

e ...returns multiple outputs in the form of a mental ray struct return. The various outputs
are described in detail on page 41.

1.2.3 Structure of this Document

This document is divided into sections of Fundamentals (beginning on page 3) which explain
the main features of the material , the Parameters section (page 15) that goes through all the
parameters .

1.3 Fundamentals

1.3.1 Physics and the Display

The mia_material primarily attempts to be physically accurate hence it has an output with a
high dynamic range. How visually pleasing the material looks depends on how the mapping
of colors inside the renderer to colors displayed on the screen is done.

When working with the mia_material it is highly encouraged to make sure one is operating
through a tone mapper/exposure control or at the very least are using gamma correction.

1.3.1.1 A Note on Gamma

Describing all the details about gamma correction is beyond the scope of this document and
this is just a brief overview.

The color space of a normal off-the-shelf computer screen is not linear. The color with RGB
value 200 200 200 is not twice as bright as a color with RGB value 100 100 100 as one would
expect.

This is not a “bug” because due to the fact that our eyes see light in a non linear way, the
former color is actually perceived to be about twice as bright as the latter. This makes the
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color space of a normal computer screen roughly perceptually uniform. This is a good thing,
and is actually the main reason 24 bit color (with only 8 bits - 256 discrete levels - for each of
the red, green and blue components) looks as good as it does to our eyes.

The problem is that physically correct computer graphics operate in a true linear color space
where a value represents actual light energy. If one simply maps the range of colors output to
the renderer naively to the 0-255 range of each RGB color component it is incorrect.

The solution is to introduce a mapping of some sort. One of these methods is called gamma
correction.

Most computer screens have a gamma of about 2.22, but most software default to a gamma
of 1.0, which makes everything (especially mid-tones) look too dark, and light will not “add
up” correctly.

Using gamma of 2.2 is the theoretically “correct” value, making the physically linear light
inside the renderer appear in a correct linear manner on screen.

However, since the response of photographic film isn’t linear either, users have found this
“theoretically correct” value looks too “bright” and “washed out”, and a very common
compromise is to render to a gamma of 1.8, making things look more “photographic”, i.e.
as if the image had been shot on photographic film and then developed.

1.3.1.2 Tone Mapping

Another method to map the physical energies inside the renderer to visually pleasing pixel
values is known as tone mapping. This can be done either by rendering to a floating point file
format and using external software, or use some plugin to the renderer to do it on-the-fly.

Two tone mapping shaders are included in the library, the simple mia_ezposure_simple and
the more advanced mia_exposure_photographic, both of which are documented on page 79

Note: Take special care when using tone mapping together with gamma correction; some tone
mapping shaders has their own gamma correction feature built in, and if one is not careful
one can end up with washed out gamma due to it being applied twice. Make sure to keep an
eye on the gamma workflow so it is applied in one place.

1.3.2 Use Final Gathering and Global Illumination

The material is designed to be used in a realistic lighting environment, i.e. using full direct
and indirect illumination.

In mental ray there are two basic methods to generate indirect light: Final Gathering and
Global Illumination. For best results at least one of these methods should be used.

2This is also known as the “sRGB” color space.
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At the very least one should enable Final Gathering, or use Final Gathering combined with
Global Illumination (photons) for quality results. Performance tips for using Final Gather
and Global Illumination can be found on page 45 of this document.

If you are using an environment for your reflections, make sure the same environment (or a
blurred copy of it) is used to light the scene through Final Gathering.

1.3.3 Use Physically Correct Lights

Traditional computer graphics light sources live in a cartoon universe where the intensity of the
light doesn’t change with the distance. The real world doesn’t agree with that simplification.
Light decays when leaving a light source due to the fact that light rays diverge from their
source and the “density” of the light rays change over distance. This decay of a point light
source is 1/d?, i.e. light intensity is proportional to the inverse of the square of the distance
to the source.

One of the reasons for this traditional oversimplification is actually the fact that in the early
days of computer graphics tone mapping was not used and problems of colors “blowing out”
to white in the most undesirable ways® was rampant.

However, as long as only Final Gathering (FG) is used as indirect illumination method, such
traditional simplifications still work. Even light sources with no decay still create reasonable
renderings! This is because FG is only concerned with the transport of light from one surface
to the next, not with the transport of light from the light source to the surface.

It’s when working with Global Illumination (GI) (i.e. with photons) the troubles arise.

When GI is enabled, light sources shoot photons. It is imperative for the mia_material (or
any other mental ray material) to work properly for the energy of these photons to match the
direct light cast by that same light! And since photons model light in a physical manner, decay

is “built in”.

Hence, when using GI:

e Light sources must be emitting photons at the correct energy

e The direct light must decay in a physically correct way to match the decay of the photons.

Therefore it is important to make sure the light shader and the photon emission shader of the
lights work well together.

3Raw clipping in sSRGB color space is very displeasing to the eye, especially if one color channel clips earlier
than the others. Tone mapping generally solves this by “soft clipping” in a more suitable color space than
sRGB.
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1.4 Features

1.4.1 The Shading Model

From a usage perspective, the shading model consists of three components:

e Diffuse - diffuse channel (including Oren Nayar “roughness”).
e Reflections - glossy anisotropic reflections (and highlights).

e Refractions - glossy anisotropic transparency (and translucency).

ve

Reflections
(glossy)

Diffuse

Retfractions
(glossy)

Translucency

The mia_material shading model

Direct and indirect light from the scene both cause diffuse reflections as well as translucency
effects. Direct light sources also cause traditional “highlights” (specular highlights).

Raytracing is used to create reflective and refractive effects, and advanced importance-driven

multi-sampling is used to create glossy reflections and refractions.

The rendering speed of the glossy reflections/refractions can further be enhanced by

interpolation as well as “emulated” reflections with the help of Final Gathering.
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1.4.2  Conservation of Energy

One of the most important features of the material is that it is automatically energy conserving.
This means that it makes sure that dif fuse + reflection + refraction <= 1, i.e. that no
energy is magically created and the incoming light energy is properly distributed to the diffuse,

reflection and refraction components in a way that maintains the first law of thermodynamics?.

In practice, this means for example that when adding more reflectivity, the energy must be
taken from somewhere, and hence the diffuse level and the transparency will be automatically
reduced accordingly. Similarly, when adding transparency, this will happen at the cost of the
diffuse level.

4The first law of thermodynamics is that no one talks about thermodynamics ;)
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The rules are as follows:

e Transparency takes energy from Diffuse, i.e. at 100% transparency, there will be no
diffuse at all.

e Reflectivity takes energy from both Diffuse and Transparency, i.e. at 100% reflectivity
there will neither be any diffuse nor any transparency.

e Translucency is a type of transparency, and refr_trans_w defines the percentage of
transparency vs. translucency.

From left to right: Transparencies 0.0, 0.4, 0.8 and 1.0

It also means that the level of highlights is linked to the glossiness of a surface. A high
refl_gloss value causes a narrower but very intense highlight, and a lower value causes a
wider but less intense highlight. This is because the energy is now spread out and dissipated
over a larger solid angle.

1.4.3 BRDF - how Reflectivity Depends on Angle

In the real world, the reflectivity of a surface is often view angle dependent. A fancy term
for this is BRDF (Bi-directional Reflectance Distribution Function), i.e. a way to define how
much a material reflects when seen from various angles.
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The reflectivity of the wooden floor depends on the view angle

Many materials exhibit this behavior. Glass, water and other dielectric materials with fresnel
effects (where the angular dependency is guided strictly by the Index of Refraction) are the
most obvious examples, but other layered materials such as lacquered wood, plastic, etc.
display similar characteristics.

The mia_material allows this effect both to be defined by the Index of Refraction, and also

allows an explicit setting for the two reflectivity values for:

e 0 degree faces (surfaces directly facing the camera)

e 90 degree faces (surfaces 90 degrees to the camera)

See the BRFD section on page 27 for more details.

1.4.4 Reflectivity Features

The final surface reflectivity is in reality caused by the sum of three components:

o The Diffuse effect
e The actual reflections

e Specular highlights that simulate the reflection of light sources

Diffuse, Reflections and Highlights
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In the real world “highlights” are just (glossy) reflections of the light sources. In computer
graphics it’s more efficient to treat these separately. However, to maintain physical accuracy
the material automatically keeps “highlight” intensity, glossiness, anisotropy etc. in sync with
the intensity, glossiness and anisotropy of reflections, hence there are no separate controls for
these as both are driven by the reflectivity settings.

1.4.5 Transparency Features

The material supports full glossy anisotropic transparency, as well as includes a translucent
component, described more in detail on page 24.

Translucency

1.4.5.1 Solid vs. Thin-Walled

The transparency/translucency can treat objects either as solid or thin walled.

If all objects were treated as solids at all times, every single window pane in an architectural
model would have to be modeled as two faces; an entry surface (that refracts the light slightly
in one direction), and immediately following it an exit surface (where the light would be
refracted back into the original direction).

Not only is this additional modeling work, it is a waste of rendering power to model a refraction
that has very little net effect on the image. Hence the material allows modeling the entire
window pane as one single flat plane, foregoing any actual “‘refraction” of light.
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Solid vs. Thin-walled transparency and translucency

In the above image the helicopter canopy, the window pane, the translucent curtain and the
right sphere all use “thin walled” transparency or translucency, whereas the glass goblet, the
plastic horse and the left sphere all use “solid” transparency or translucency.

1.4.5.2 Cutout Opacity

Beyond the “physical” transparency (which models an actual property of the material) there
is a completely separate non-physical “cutout opacity” channel to allow “billboard” objects
such as trees, or to cut out things like a chain-link fence with an opacity mask.

1.4.6 Special Effects

1.4.6.1 Built-in Ambient Occlusion

Ambient Occlusion (henceforth referred to as “A0”) is a method spearheaded by the film
industry to emulate the “look” of true global illumination by using shaders that calculate how
occluded (i.e. blocked) an area is from receiving incoming light.
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Used alone, an AO shader® creates a grayscale output that is “dark” in areas to which light
cannot reach and “bright” in areas where it can:

An example of AO applied to a scene

As seen in the above image, one of the main results of AO is dark in crevices and areas where
light is blocked by other surfaces and it is bright in areas that are exposed to the environment.

One important aspect of AO is that one can tune the “distance” within which it looks for
occluding geometry.

5Like the separate mental ray mib_amb_occlusion shader.
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AO looked up within a shorter radius

Using a radius creates only a “localized” AO effect; only surfaces that are within the given
radius are actually considered occluders (which is also massively faster to render). The
practical result is that the AO gives us nice “contact shadow” effects and makes small crevices
visible.

There are two ways to utilize the built in AO in the mia_material:

o “Traditional” AO for adding an omnipresent ambient light that is then attenuated by
the AO to create details.

e Use AO for detail enhancement together with existing indirect lighting methods (such
as Final Gathering or photons).

The latter method is especially interesting when using a highly “smoothed” indirect
illumination solution (i.e. a very high photon radius, or an extremely low final gather density)
which could otherwise lose small details. By applying the AO with short rays these details
can be brought back.
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1.4.7 Performance Features

Finally the mia_material contains a large set of built in functions for top performance,
including but not limited to:

e Advanced importance sampling with ray rejection thresholds

e Adaptive glossy sample count

e Interpolated glossy reflection/refraction with detail enhancements
e Ultra fast emulated glossy reflections (refl_hl_only mode)

e Possibility to ignore internal reflections for glass objects

e Allowing a choice between traditional transparent shadows (suitable for e.g. a window
pane) and refractive caustics (suitable for solid glass objects) on a per material basis.
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1.5  Quick Guide to the Material Parameters

This section gives a quick overview of the parameters suitable as a memory refreshing tool
for users already familiar with mia_material. A much more detailed run down is on page 17.
Parameters labeled with [+] only exist in mia_material_z.

- diffuse_weight The amount of diffuse reflections.
- diffuse The diffuse color, i.e. the main color of the material.
- diffuse_roughness The Oren-Nayar “rougness”.

- reflectivity Overall reflectivity level. Multiplied by the brdf_xx_degree_refl parame-
ters.

- refl_color Overall reflectivity color. Normally white.
- refl_gloss Reflection glossiness. 1.0 = perfect mirror.
- refl_gloss_samples Number of samples (rays) for glossy reflections.

- refl_interpolate Interpolation (smoothing) of the glossy reflections. Speed at the price
of accuracy.

- refl_hl_only Skip actual reflections, do only highlights and “emulated” reflections via
FG.

- refl_is_metal Metal mode. Uses the diffuse color as reflection color.
- transparency The overall transparency level.

- refr_color The transparency (refraction) color.

- refr_gloss The transparency glossiness.

- refr_ior The Index of Refraction.

- refr_gloss_samples Number of samples (rays) for glossy refractions.
- refr_interpolate Interpolation (smoothing) of the glossy refractions.
- refr_translucency Enables translucency

- refr_trans_color The translucency color

- refr_trans_weight The translucency weight

- anisotropy Anisotropy. 1.0 = Isotropic.

- anisotropy_rotation The rotation of the anisotropy direction.

- anisotropy_channel The coordinate space to derive anistropy direction from.

- brdf_fresnel When on, uses the Fresnel equation (based on IOR) for the reflectivity
curve, when off, uses the “user defined” settings below.
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brdf_0_degree_refl The user defined reflectivity curve value for surfaces facing the
viewer.

brdf_90_degree_refl The user defined reflectivity curve value for grazing surfaces.
brdf_curve The user defined reflectivity curve shape.

brdf_conserve_energy When on, makes sure that energy is conserved. Keep this on!
intr_grid_density Interpolation grid density.

intr_refl_samples Number of interpolation samples for reflections.
intr_refl_ddist_on Enable “Detail Distance”

intr_refl_ddist The detail distance.

intr_refr_samples Number of interpolation samples for refraction.

single_env_sample Do only a single environment sample even if multiple reflectivity
rays are traced. Used together with mia_envblur.

refl_falloff_on Enable distance falloff for reflections
refl_falloff_dist The distance at which no reflections are seen.

refl_falloff color_on Enable the falloff color. When off, falls of to the environment
color.

refl_falloff_color The falloff color when above is on.

refl_depth The trace depth for reflections.

refl_cutoff The importance cutoff for reflections.

refr_falloff_on Enable distance falloff for refractions (transparency).

refr_falloff_dist The distance at where no transparency is seen or when the falloff
“color” is reached.

refr_falloff_color_on When off, reflections fall off to black (total absorption). When
on, falls off to the given color tint.

refr_falloff_color The color tintint for reflections per distance travelled in the medium.
refr_depth The trace depth for refractions.

refr_cutoff The importance cutoff for refractions.

indirect_multiplier The weighting of indirect illumination (FG, GI, Caustics)
fg_quality The quality of FG

fg_quality_w The weighting of above parameter (used for texture mapping).

ao_on Enable Ambient Occlusion (AO).

ao_samples Number of AO probe rays.
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- ao_distance The maximum distance to look for occlusion. Shorter is faster.
- ao_dark The “shadow color” of the AO
- ao_ambient The “additional light” for the AO.

- ao_do_details Indirect illumination detail enhancement mode. 1=using AO, 2=with

color bleed.

- thin_walled Treat surfaces as thin wafers of material, rather than the boundaries of

solids.

- no_visible_area_hl Disables traditional “highlights” for visible area lights.
- skip_inside_refl Skips weak reflections on inside of glass.

- do_refractive_caustics Do refractive caustics, rather than transparent shadows. Only

when Caustics mode is on.

- backface_cull Make surfaces invisible (to the camera only) from their back side.

- propagate_alpha Transparent surfaces propagate the alpha channel value of what is

behind them.

- hl_vs_refl_balance The relative intensity of “highlights” to reflections.

- cutout_opacity The overall opacity. Used for stencil/cut-out effects.

- additional _color An additional color simply added to the other shading.
- bump A shader used for perturbing the normal.

- no_diffuse_bump Disables bump mapping for the diffuse shading.

- mode The light list mode.

- lights The lights list itself.

4+ bump_mode Defines the mode of the new bump inputs. If zero, uses the compatible

“bump” above.

+ overall_ bump Bump that always affects everything.
+ standard_bump General bump. Does not affect diffuse when no_diffuse_bump is on.

+ multiple_outputs When on, activates the multiple outputs. When off, only writes to

“result”.
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1.6 Detailed Description of Material Parameters

1.6.1 Diffuse

diffuse_weight sets the desired level (and diffuse the color) of the diffuse reflectivity. Since
the material is energy conserving, the actual diffuse level used depends on the reflectivity and
transparency as discussed above.

The diffuse component uses the Oren-Nayar shading model. When diffuse_roughness is 0.0
this is identical to classical Lambertian shading, but with higher values the surface gets a a
more “powdery” look:

Roughness 0.0 (left), 0.5 (middle) and 1.0 (right)

1.6.2 Reflections

1.6.2.1 Basic Features

The reflectivity and refl_color together define level of reflections as well as the intensity of
the traditional “highlight” (also known as “specular highlight”).

This value is the mazimum value - the actual value also depends on the angle of the surface
and come from the BRDF curve. This curve (described in more detail on page 27) allows one
to define a brdf_0_degree_refl (for surfaces facing the view) and brdf_90_degree_refl (for
surfaces perpendicular to the view).
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No reflectivity (left), angle dependent (center), constant (right)

e The left cup shows no reflectivity at all and a purely diffuse material.
e The center cup shows a brdf_0_degree_refl of 0.1 and a brdf_90_degree_refl of 1.0.

e The right cup has a both a brdf_0_degree_refl and brdf 90_degree_refl of 0.9, i.e.
constant reflectivity across the surface.

Note how the high reflectivity automatically “subtracts” from the white diffuse color. If this
didn’t happen, the material would become unrealistically over-bright, and would break the

laws of physics ©.

The refl_gloss parameter defines the surface “glossiness”, ranging from 1.0 (a perfect mirror)
to 0.0 (a diffusely reflective surface):

6See page 6.
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Glossiness of 1.0 (left), 0.5 (center) and 0.25 (right)

The refl_samples parameters defines the maximum” number of samples (rays) are shot to

create the glossy reflections. Higher values renders slower but create a smoother result. Lower
values render faster but create a grainier result. Generally 32 is enough for most cases.

There are two special cases:

e Since a refl_gloss value of 1.0 equals a “perfect mirror” it is meaningless to shoot
multiple rays for this case, hence only one reflection ray is shot.

o If the refl samples value is set to 0, the reflections will be “perfect mirror” (and
only one ray shot) regardless of the actual value of refl_gloss . This can be used
to boost performance for surfaces with very weak reflections. The highlight still obeys
the glossiness value.

Metallic objects actually influence the color of their reflection whereas other materials do not.
For example, a gold bar will have gold colored reflections, whereas a red glass orb does not
have red reflections. This is supported through the refl_is_metal option.

e When off, the refl_color parameter defines the color and reflectivity parameter
(together with the BRDF settings) the intensity and colors of reflections.

e When on, the diffuse parameter defines the color of reflections, and reflectivity
parameter sets the “weight” between diffuse reflections and glossy (metallic) reflections.

"The actual number is adaptive and depends on reflectivity, ray importance, and many other factors.
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No metal reflections (left), Metal reflections (center), Metal mized with diffuse (right)

The left image shows non-metallic reflections (refl_is_metal is off). One can see reflections
clearly contain the color of the objects they reflect and are not influenced by the color of the
materials.

The center image uses metallic reflections (refl_is_metal is on). Now the color of reflections
are influenced by the color of the material. The right image shows a variant of this with the
reflectivity at 0.5, creating a 50:50 mix between colored reflections and diffuse reflections.

1.6.2.2 Performance Features

Glossy reflections need to trace multiple rays to yield a smooth result, which can become a
performance issue. For this reason there are a couple of special features designed to enhance
their performance.

The first of those features is the interpolation. By turning refl_interpolate on, a smoothing
algorithm allows rays to be re-used and smoothed®. The result is faster and smoother glossy
reflections at the expense of accuracy. Interpolation is explained in more detail on page 35.

For highly reflective surfaces it is clear that true reflection rays are needed. However, for less
reflective surfaces (where it is less “obvious” that the surface is really reflecting anything)
there exists a performance-enhancing shortcut, the refl_hl_only switch.

When refl_hl_only is on, no actual reflection rays are traced. Instead only the “highlights”
are shown, as well as soft reflections emulated with the help of using Final Gathering®.

8The technique works best on flat surfaces.
91f Final Gathering is not enabled, this mode simply shows the highlights and attempts no emulation of
reflections.
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The refl_hl only mode takes no additional render time compared to a non-glossy (diffuse)
surface, yet can yield surprisingly convincing results. While it may not be completely
convincing for “hero” objects in a scene it can work very well for less essential scene elements. It
tends to work best on materials with weak reflections or extremely glossy (blurred) reflections:

The left two cups use real reflections, those on the right use refl_hl_only

While the two cups on the left are undoubtedly more convincing than those on the right, the
fact that the right hand cups have no additional render time compared to a completely non-
reflective surface makes this mode very interesting. The emulated reflections still pull in a
directional color bleed such that the bottom side of the cup is influenced by the color of the
wooden floor just as if it was truly reflective.

1.6.3 Refractions

The transparency parameter defines the level of refractions and refr_color defines the color.
While this color can be used to create “colored glass”, there is a slightly more accurate method
to do this described on page 46.

Due to the materials energy conserving nature (see page 6) the value set in the transparency
parameter is the mazimum value - the actual value depends on the reflectivity as well as the
BRDF curve.

The refr_ior defines the Index of Refraction, which is a measurement of how much a ray
of light “bends” when entering a material. Which direction light bends depends on if it is
entering or exiting the object. The mia_material use the direction of the surface normal as
the primary cue for figuring out whether it is entering or exiting. It is therefore important to
model transparent refractive objects with the surface normal pointing in the proper direction.

The IOR can also be used to define the BRDF curve, which is what happens in the class of
transparent materials known as “dielectric” materials, and is illustrated here:
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Index of refraction 1.0 (left), 1.2 (center) and 1.5 (right)

Note how the leftmost cup looks completely unrealistic and is almost invisible. Because an
IOR of 1.0 (which equals that of air) is impossible, we get no change in reflectivity across
the material and hence perceive no “edges” or change of any kind. Whereas the middle and
rightmost cups have a realistic change in reflectivity guided by the IOR.

One is however not forced to base the reflectivity on the IOR but can instead use the BRDF
mode to set it manually:

Different types of transparency

The left cup again acquires it’s curve from the index of refraction. The center cup has
a manually defined curve, which has been set to a brdf 90_degree_refl of 1.0 and a
brdf_0_degree_refl of 0.2, which looks a bit more like metallized glass. The rightmost cup
uses the same BRDF curve, but instead is set to “thin walled” transparency (see page 10).
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Clearly, this method is the better way to make “non-refractive” objects compared to simply
setting refr_ior to 1.0 as we tried above.

As with reflections, the refr_gloss parameter defines how sharp or blurry the refrac-
tions/transparency are, ranging from a 1.0 (a completely clear transparency) to 0.0 (an ex-
tremely diffuse transparency):

A refr_gloss of 1.0 (left), 0.5 (center) and 0.25 (right)

Just as with the glossy reflections, the glossy transparency has a refr_interpolate switch,
allowing faster, smoother, but less accurate glossy transparency. Interpolation is described on
page 35.

1.6.4 Translucency

Translucency is handled as a special case of transparency, i.e. to use translucency there must
first exist some level of transparency, and the refr_trans_w parameter decides how much of
this is used as transparency and how much is translucency:
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A transparency of 0.75 and a refr_trans_w of 0.0 (left), 0.5 (center) and 1.0 (right)

o If refr_trans_w is 0.0, all of the transparency is used for transparency.

o If refr_trans_w is 0.5, half of the transparency is used for transparency and half is
used for translucency.

o If refr_trans_w is 1.0, all of the transparency is used for translucency and there is no
actual transparency.

The translucency is primarily intended to be used in “thin walled” mode (as in the example
above) to model things like curtains, rice paper, or such effects. In “thin walled” mode it
simply allows the shading of the reverse side of the object to “bleed through”.

The shader also operates in “Solid” mode, but the implementation of translucency in the
mia_material is a simplification concerned solely with the transport of light from the back of
an object to it’s front faces and is not “true” SSS (sub surface scattering). An “SSS-like” effect
can be generated by using glossy transparency coupled with translucency but it is neither as
fast nor as powerful as the dedicated SSS shaders.
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Solid translucency w. refr_trans_w of 0.0 (left), 0.5 (center) and 1.0 (right)

1.6.5 Anisotropy

Anisotropic reflections and refractions can be created using the anisotropy parameter. The
parameter sets the ratio between the “width” and the “height” of the highlights, hence when
anisotropyis 1.0 there is no anisotropy, i.e. the effect is disabled.

For other values of anisotropy (above and below 1.0 are both valid) the “shape” of the
highlight (as well as the appearance of reflections) change.

anisotropy values of 1.0 (left), 4.0 (center) and 8.0 (right)

The anisotropy can be rotated by using the anisotropy_rotation parameter. The value 0.0
is un-rotated, and the value 1.0 is one full revolution (i.e. 360 degrees). This is to aid using a
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texture map to steer the angle:

anisotropy_rotation values of 0.0 (left), 0.25 (center) and textured (right)

Note: When using a textured anisotropy_rotation it is important that this texture is
not anti-aliased (filtered). Otherwise the anti-aliased pixels will cause local vortices in the
anisotropy that appear as seam artifacts.

For values of 0 or above, the space which defines the “stretch directions” of the highlights are
derived from the texture space set by anisotropy_channel'°.

anisotropy_channel can also have the following “special” values:

-1: the base rotation follows the local object coordinate system.

-2: the base rotation follows the bump basis vectors
e -3: the base rotation follows the surface derivatives

-4: the base rotation follows a vector placed in state>tex prior to calling mia_material

See also “brushed metal” on page 55 in the tips section.

1.6.6 BRDF

As explained in the introduction on page 8 the materials reflectivity is ultimately guided by
the incident angle from which it is viewed.

10Note that deriving the anisotropy from texture space only creates one space per triangle and may cause
visible seams between triangles.
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0 degree (green) and 90 degree (red) view angles

There are two modes to define this BRDF curve:

The first mode is “by IOR”, i.e. when brdf _fresnel is on. How the reflectivity depends on
the angle is then solely guided by the materials IOR. This is known as Fresnel reflections and
is the behavior of most dielectric materials such as water, glass, etc.

The second mode is the manual mode, when brdf_fresnel is off. In this mode the
brdf 0_degree_refl parameter defines the reflectivity for surfaces directly facing the viewer
(or incident ray), and brdf 90_degree_refldefines the reflectivity of surfaces perpendicular
to the viewer. The brdf_curve parameter defines the falloff of this curve.

This mode is used for most hybrid materials or for metals. Most material exhibit strong
reflections at grazing angles and hence the brdf_90_degree_refl parameter can generally be
kept at 1.0 (and using the reflectivity parameter to guide the overall reflectivity instead).
Metals tend to be fairly uniformly reflective and the brdf_0_degree_reflvalue is high (0.8
to 1.0) but many other layered materials, such as linoleum, lacquered wood, etc. has lower
brdf_0_degree_refl values (0.1 - 0.3).

See the tips on page 45 for some guidelines.

1.6.7 Special Effects

1.6.7.1 Built-in Ambient Occlusion

The built in Ambient Occlusion (henceforth shortened to “A0”) can be used in two ways.
Either it is used to enhance details and “contact shadows” in indirect illumination (in which
case there must first ezist some form of indirect illumination in the first place), or it is used
together with a specified “ambient light” in a more traditional manner. Hence, if neither
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indirect light exists, nor any “ambient light” is specified, the AO will have no effect 1.

The ao_samples sets the number of samples (rays) shot for creating the AO. Higher value
is smoother but slower, lower values faster but grainier. 16 is the default and 64 covers most
situations.

The ao_distance parameter defines the radius within which occluding objects are found.
Smaller values restrict the AO effect only to small crevices but are much faster to render.
Larger values cover larger areas but render slower. The following images illustrate the raw
AO contribution with two different distances:
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Larger distance Smaller distance

As mentioned in the introduction on page 11 the AO can be used for “detail enhancement” of
indirect illumination. This mode is enabled by setting ao_do_details to 1.

This mode is used to apply short distance AO multiplying it with the existing indirect
illumination (Final Gathering or GI/photons), bringing out small details.

Study this helicopter almost exclusively lit by indirect light:

Without AO With AO

1 Sometimes people use AO as a general multiplier to all diffuse light. This has the distinct drawback of
affecting even brightly directly lit areas with “AO shadows”, which can look wrong. This use is not covered
by the built in AO shader because it is trivially achieved by simply applying the mib_amb_occlusion shader
to the diffuse color of the material and putting the materials original color into it’s Bright parameter.
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Note how the helicopter does not feel “grounded” in the left image and the shadows under
the landing skids are far too vague. The right image uses AO to “punch out” the details and
the contact shadows.

One can also set ao_do_details to 2, which enables a more sophisticated AO mode new in
mental ray 3.6. Instead of doing simple occlusion, which can only add “darkness” of varying
degree, the shader will actually look at the color of the surrounding objects, and use that color
rather than “darkness”. Since this involves shading each of the points hit, this is not as fast
as pure AQ, but it has the additional effect of resolving both bright and dark details.

ao_do_details = 1 ao_do_details = 2

The image on the left illustrates the problem with the traditional AO; it applies to all indirect
illumination and always makes it darker. It is most noticable on the glowing sphere (which
has a dark spot under it) but can also be perceived on the floor in front of the cube which
is suspiciously dark, even though the cube is strongly lit on the front, as well as between the
legs of the horse and the underside of the red sphere.

In contrast, the image on the right is using ao_do_details=2 for all materials, and now the
floor is correclty lit by the glowing ball, there is a hint of white bounce-light on the floor from
the cube, there is light between the legs of the horse, and on the underside of the red ball.

If you find that using AO creates a “dirty” look with excessive darkening in corners, or dark
rims around self-illuminated objects, try to set ao_do_details to 2 for a more accurate result.

The ao_dark parameter sets the “darkness” of the AO shadows. It is used as the multiplier
value for completely occluded surfaces. In practice this means: A black color will make the
AQ effect very dark, a middle gray color will make the effect less noticeable (brighter) etc.
When the new ao_do_details mode 2 is used, it instead sets the “blend” between the color
picked up from nearby objects and ”darkness”. The blend is:

(1 — ao_dark) * (objectcolors) + black * ao_dark.

The ao_ambient parameter is used for doing more “traditional” AQO, i.e. supplying the
imagined “ever present ambient light” that is then attenuated by the AO effect to create
shadows.

While “traditional AO” is generally used when rendering without other indirect light, it can
also be combined with existing indirect light. One needs to keep in mind that this magical
“ever present ambient light” is inherently non-physical, but may perhaps help lighten some
troublesome dark corners.
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1.6.8 Advanced Rendering Options

1.6.8.1 Reflection Optimization Settings

These parameters define some performance boosting options for reflections.

refl_falloff_dist allows limiting reflections to a certain distance, which both speeds up
rendering as well as avoiding pulling in distant objects into extremely glossy reflections.

If refl_falloff_color is enabled and used, reflections will fade to this color. If it is not enabled,
reflections will fade to the environment color. The former tends to be more useful for indoor
scenes, the latter for outdoor scenes.

Full reflections (left), fading over 100mm (center) or 25mm (right)

Each material can locally set a maximum trace depth using the refl_depth parameter. When
this trace depth is reached the material will behave as if the refl_hl_only switch was enabled,
i.e. only show highlights and “emulated” reflections. If refl_depth is zero, the global trace
depth is used.

refl_cutoff is a threshold at which reflections are rejected (not traced). It’s a relative value,

i.e. the default of 0.01 means that rays that contribute less than 1% to the final pixel are
ignored.

1.6.8.2 Refraction Optimization Settings

The optimization settings for refractions (transparency) are nearly identical to those for
reflections. The exception is that of refr_falloff_color which behaves differently.
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o When refr_falloff _dist is used, and refr_falloff_color is not used, transparency rays
will fade to black. This is like smoked glass or highly absorbent materials. Transparency
will just completely stop at a certain distance. This has the same performance advantage
as using the refl_falloff_dist for reflections, i.e. tracing shorter rays are much faster.

e However, when refr_falloff_color is used, it works differently. The material will then
make physically correct absorption. Exactly at the distance given by refr_falloff_dist
will the refractions have the color given by refr_falloff_color - but the rays are not
limited in reach. At twice the distance, the influence of refr_falloff_color is double, at
half the distance half, etc.

No limit (left), fade to black (center), fade to blue (right)

The leftmost cup has no fading. The center cup has refr_falloff_color off, and hence fades
to black, which also includes the same performance benefits of limiting the trace distance as
when used for reflections.

The rightmost cup, however, fades to a blue color. This causes proper exponential attenuation
in the material, such that the thicker the material, the deeper the color. See page 46 for a
discussion about realistic colored glass.

Note: To render proper shadows when using refr_falloff dist one must use ray traced
shadows, and the shadow mode must be set to segment. See the mental ray manual on
shadow modes.

Each material can locally set a maximum trace depth using the refl_ depth parameter.
When this trace depth is reached, the material returns a black refraction. Most other
transparency /glass shaders return the environment, which can create very odd results when
rendering an indoor rendering with an extremely bright outdoor environment, and bright areas
appear in glass objects in dark cupboards that suddenly refract some sky. If refl_depth is
zero, the global trace depth is used, and the environment is returned, rather than black.
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refl_cutoff works identical to the reflection case described above.

1.6.8.3 Options

The options contain several on/off switches that control some of the deepest details of the
material:

The thin_walled decides if a material causes refractions (i.e. behaves as if it is made of a solid
transparent substance) or not (i.e. behaves as if made of wafer-thin sheets of a transparent
material). This topic is discussed in more detail on page 10.

Solid (left) and Thin-walled (right)

The do_refractive_caustics parameter defines how glass behaves when caustics are enabled.

When not rendering caustics, the mia_material uses a shadow shader to create transparent
shadows. For objects such as window panes this is perfectly adequate, and actually creates
a better result than using caustics since the direct light is allowed to pass (more or less)
undisturbed through the glass into e.g. a room.

Traditionally, enabling caustics in mental ray cause all materials to stop casting transparent
shadows and instead start to generate refractive caustics. In most architectural scenes this is
undesirable; one may very well want a glass decoration on a table to generate caustic effect,
but still want the windows of the room to let in quite normal direct light. This switch makes
this possible on the material level.
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Using transparent shadows Using refractive caustics

The left image shows the result that happen when do_refractive_caustics is off, the right
the result when it is on. Both modes can be freely mixed within the same rendering. Photons
are automatically treated accordingly by the built in photon shader, shooting straight through
as direct light in the former case, and being refracted as caustics in the latter.

The backface_cull switch enables a special mode which makes surfaces completely invisible
to the camera when seen from the reverse side. This is useful to create “magic walls” in a
room. If all walls are created as planes with the normal facing inwards, the backface_cull
switch allows the room to be rendered from “outside”. The camera will see into the room,
but the walls will still “exist” and cast shadows, bounce photons, etc. while being magically
“see through” when the camera steps outside.

No Back-face Culling Back-face Culling on the walls

The propagate_alpha switch defines how transparent objects treats any alpha channel
information in the background. When on, refractions and other transparency effects will
propagate the alpha of the background “through” the transparent object. When off,
transparent objects will have an opaque alpha.

The no_visible_area_hl parameter concerns the behavior of visible area lights.

Keep in mind that traditional “highlights” (i.e. specular effects) is a computer graphics “trick”
in place of actually creating a glossy reflection of an actual visible light-emitting surface.
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However, mental ray area lights can be visible, and when they are visible they will reflect in
any (glossy) reflective objects. If both the reflection of the visible area light and the highlight
is rendered, the light is added twice, causing an unrealistic brightening effect. This switch
(which defaults to on) causes visible area lights to loose their “highlights” and instead only

appear as reflections!?.

hl_vs_refl_balance modifies the balance between the intensity of the highlight and the
intensity of reflections. The default value of 1.0 is the “as close to physically correct as
possible” value. This parameter allows tweaking this default value where values above 1.0
makes the highlight stronger, and below 1.0 weaker.

A final optimization switch (also on by default) is the skip_inside refl checkbox. Most
reflections on the insides of transparent objects are very faint, except in the special case
that occurs at certain angles known as “Total Internal Reflection” (TIR). This switch saves
rendering time by ignoring the weak reflections completely but retaining the TIR'’s.

The indirect_multiplier allows tweaking of how strongly the material responds to indirect
light, and fg_quality is a local multiplier for the number of final gather rays shot by the
material. Both default to 1.0 which uses the global value.

To aid in mapping textures to fg_quality the additional fg_quality _wparameter exists. When
zero, fg_quality is the raw quality setting, but for a nonzero fg_quality _w the actual quality
used is the product of the two values, with a minimum of 1.0. This means that with a color
texture mapped to fg_quality and fg_quality_w set to 5.0, black in the texture results in a
quality of 1.0 (i.e. the number of final gather rays shot is the global default), and white in the
texture in a quality of 5.0 (five times as many rays are shot).

1.6.9 Interpolation

Glossy reflections and refractions can be interpolated. This means they render faster and
become smoother.

Interpolation works by pre-calculating glossy reflection in a grid across the image. The
number of samples (rays) taken at each point is govern by the refl_samples or refr_samples
parameters just as in the non-interpolated case. The resolution of this grid is set by the
intr_grid_density parameter.

However, interpolation can cause artifacts. Since it is done on a low resolution grid, it can lose
details. Since it blends neighbors of this low resolution grid it can cause over-smoothing. For
this reason it is primarily useful on flat surfaces. Wavy, highly detailed surfaces, or surfaces

using bump maps will not work well with interpolation.

Valid values for intr_grid_density parameter is:

e 0 = grid resolution is double that of the rendering

12Naturally this does not apply to the refl_hl_only mode, since it doesn’t actually reflect anything.
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1 = grid resolution is same as that of the rendering

e 2 = grid resolution is half of that of the rendering

3 = grid resolution is a third of that of the rendering.

4 = grid resolution is a fourth of that of the rendering.

5 = grid resolution is a fifth of that of the rendering.

Within the grid data is stored and shared across the points. Lower grid resolutions is faster
but lose more detail information. Both reflection and refraction has an intr_refl_samples
parameter which defines how many stored grid points (in an N by N group around the currently
rendered point) is looked up to smooth out the glossiness. The default is 2, and higher values
will “smear” the glossiness more, but are hence prone to more overmoothing artifacts.

No interpolation (left), looking up 2 points (center) and 4 points (right)

The reflection of the left cup in the floor is not using interpolation, and one can perceive some
grain (here intentionally exaggerated). The floor tiles under the other two cup uses a half
resolution interpolation with 2 (center) and 4 (right) point lookup respectively.

This image also illustrates one of the consequences of using interpolation: The foot of the left
cup, which is near the floor, is reflected quite sharply, and only parts of the cup far from the
floor are blurry. Whereas the interpolated reflections on the right cups have a certain “base
level” of blurriness (due to the smoothing of interpolation) which makes even the closest parts
somewhat blurry. In most scenes with weak glossy reflections this discrepancy will never be
noticed, but in other cases this can make things like legs of tables and chairs feel “unconnected”
with a glossy floor, if the reflectivity is high.

To solve this the intr_refl_ddist parameter exists. It allows a second set of detail rays to be
traced to create a “clearer” version of objects within that radius.
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No detail distance (left), 25mm detail distance (center) and 150mm detail distance (right)

All three floor tiles use interpolation but the rightmost two use different distances for the
“detail distance”.

This also allows an interesting “trick”: Set the refl_samples to 0, which renders reflections
as if they were mirror-perfect but use the interpolation to introduce blur into this “perfect”
reflection (and perhaps use the intr_refl_ddist to make nearby parts less blurry). This is an
extremely fast way to obtain a glossy reflection.

No detail distance (left), with detail distance (right)

The above floor tiles are rendered with mirror reflections, and the “blurriness” comes solely
from the interpolation. This renders as fast (or faster!) than pure mirror reflections, yet gives
a satisfying illusion of true glossy reflections, especially when utilizing the intr_refl_ddist as
on the right.
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1.6.10 Special Maps

The mia_material also supports the following special inputs:

1.6.10.1 Bump Mapping

The bump parameter accepts a shader that perturbs the normal for bump mapping. This
parameter is only used it the new bump_mode parameter is zero.

When no_diffuse_bump is off, the bumps apply to all shading components (diffuse,
highlights, reflections, refractions... ). When it is on, bumps are applied to all component
except the diffuse. This means bumps are seen in reflections, highlights, etc. but the diffuse
shading shows no bumps. It is as if the materials diffuse surface is smooth, but covered by a
bumpy lacquer coating.

no_diffuse_bump is off (left) and on (right)

In mia_material_x there are also three new parameters related to bump mapping: two
vector bump inputs, overall bump and standard_bump, and a bump_mode parameter
defining the coordinate-space of those vectors. The shaders put into overall_bumpor
standard_bump should return a wector, but it is also legal for those shaders to modify
the normal vector themselves and return (0,0,0).

overall_bumpdefines an overall bump that always applies both to the diffuse and the specular
component at all times, regardless of the setting of no_diffuse_bump’'standard_bump
is a vector equivalent of the old bump parameter, in that it applies globally when
no_diffuse_bump is off, and only to the specular/reflection “layer” when no_diffuse_bump
is on. However, the standard _bump is added “on top of” the overall_ bump result.
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The intended use is to put the mia_roundcorners shader in overall_bumpand your normal
bump shader into standard_bump. This way, the “round corners” effect will apply both to
the diffuse and specular component irregardless of the setting of no_diffuse_bump.

The bump_mode parameter defines the coordinate space of the vectors, and if they are
additive or not. The following values are legal:

e (0: compatible mode. The old bump parameter is used in place of overall_ bump and
standard_bump.

e 1: “add” mode in “internal” space
e 2: “add” mode in world space
: “add” mode in object space

3
e 4: “add” mode in camera space

e 5: “set” mode in “internal” space
e 6: “set” mode in world space

e 7: “set” mode in object space

e 8: “set” mode in camera space

The “add” modes mean that the vector should contain a normal perturbation, ie. a
modification that is “added” to the current normal. Whereas “set” mode means that the
actual normal is replaced by the incoming vector, interpreted in the aforementioned coordinate
space.

This new scheme makes the mia_material_z bump mapping compatible with more mental ray
integrations, as well as allows the round corners to be applied even if no_diffuse_bump is
on.
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1.6.10.2 Cutout Opacity and Additional Color

The cutout_opacity is used to apply an opacity map to completely remove parts of objects.
A classic example is to map an image of a tree to a flat plane and use opacity to cut away the
parts of the tree that are not there.

Mapping the transparency (left) vs. cutout_opacity (right)

The additional_color is an input to which one can apply any shader. The output of this
shader is simply added on top of the shading done by the mia_material and can be used both
for “self illumination” type effects as well as adding whatever additional shading one may
want.

The material also supports standard displacement and environment shaders. If no
environment is supplied, the global camera environment is used.
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1.6.11 Multiple Outputs of mia_material_z

1.6.11.1 Introduction

Here follows a detailed listing of the available outputs of mia_material_z:

Most of the outputs follow the pattern of xxx_result, xxx_raw and xxx_level. The “result”
is the final contribution, “raw” is the un-scaled contribution, and “level” is the scaling. The
“level” is often related to an input parameter (or combinations thereof), and has been modified
to abide by the energy conservation feature of the material.

Unless otherwise noted, it is true that xzx_result = xxx_raw * xxx_level.

refl result refl raw refl level

The different outputs and their relationship

Hence the outputs contain some redundancy; if one just wants the “current reflections” in a
separate channel, use refl_result, but if one wants more control over the amount of reflections
in post production, one can instead use refl raw and refl level, multiplying them in the
compositing phase prior to adding them to the final color.

Be aware, though, that mia_material_x will intentionally sample reflections that has a very

low level in the actual rendering phase at low quality (for performance), so doing huge
modifications to reflection intensity in post should be avoided.

1.6.11.2 List of All Outputs

The following outputs exist:

e result is the main, blended output, i.e. the “beauty” pass. It is identical to the single
output of mia_material. If the “safety” parameter multiple_outputs is off, no other
output except this one is ever written to 13.

13To easier support using mia_material_z in phenomena and other places where formerly mia_material was
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diffuse_result is the resulting diffuse component after lighting, including textures,
diffuse_raw is the diffuse lighting itself, without textures, and diffuse_level is the
diffuse texture color adjusted by the energy conservation.

spec_result is the resulting specular component, spec_raw is the raw un-attenuated
highlight, and spec_level is the specular level, which is the same as refl_level if the
input parameter hl_vs_refl_balance is 1.0.

refl_result is the resulting reflection component, refl raw is the raw (full intensity)
reflection, and refl_level is the actual reflectivity, including reflection color and BRDF
(or fresnel) curve attenuation effects.

refr_result is the resulting refraction (transparency) component, refr_raw is the raw
full intensity transparency, and refr_level is the actual transparency level, which has
been adjusted by the energy conservation.

tran_result is the resulting translucency component, tran_raw is the raw translucency,
and tran_level the actual translucency level, adjusted by the energy conservation.

indirect_result is the resulting indirect illumination including ambient occlusion
effects and multiplying by the diffuse color, indirect_raw is the raw result from
mi_compute_avg radiance(), indirect_post_ao is the indirect illumination affected
by AO but without being multiplied by the diffuse color, and ao_raw is the raw
contribution of the AO.

add_result is a straight passthrough of the add_color parameter.

opacity_result contains the final contribution of any background of the object as a result
of the input cutout_opacity being less than 1.0. opacity_raw contains the background
‘without scaling by the opacity. These outputs will contain black if cutout_opacity is
1.0 since no actual transparency ray is ever traced in that case! The opacity output
contains the actual opacity itself. Care must be taken if opacity equals zero, because
this mean that the material has performed no shading whatsoever and none of the other
outputs will contain any value at all!

used, the multiple_outputs parameter exists. If this is set to off, no other parameter than result is written
to (leaving the others unmodified and hence undefined). This also makes it safe to supply mia_material_z to
parameters of type “shader” which only expect a single color return value.
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1.6.11.3 Proper Compositing

Due to the redundancy available in the outputs, there are several ways to composite them
together to yield the same result as the beauty render. Here we outline two compositing
pipelines in equation form.

First we have the “simple” variant, which is simply a sum of the various result parameters.
This version allows only minor post production changes to the overall balance between the
materials.

But it has the advantage of not needing as many files, as well as working reasonably well in
non-floating-point compositing.

Beauty = diffuse_result + indirect_result + spec_result +
refl_result + refr_result + tran_result +
add_result

Then we have the more “complex” variant which uses the various raw and level outputs, which
allows much greater control in post production.

Note that the raw outputs needs to be stored and composited in floating point to maintain
the dynamic range. The level outputs always stay in a 0.0-1.0 range and does not require
floating point storage.

(diffuse_raw + (indirect_raw * ao_raw)) +
spec_raw +

Beauty = diffuse_level
spec_level

* X X X ¥

refl_level refl_raw +
refr_level refr_raw +
tran_level tran_raw +

add_result
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1.7 Tips and Tricks

1.7.1 Final Gathering Performance

The Final Gathering algorithm in mental ray 3.5 is vastly improved from earlier versions,
especially in it’s adaptivity. This means one can often use much lower ray counts and much
lower densities than in previous versions of mental ray.

Many stills can be rendered with such extreme settings as 50 rays and a density of 0.1 - if this
causes “over-smoothing” artifacts, one can use the built in AO (see page 28) to solve those
problems.

When using Final Gathering together with GI (photons), make sure the photon solution is
fairly “smooth” by rendering with Final Gathering disabled first. If the photon solution
is noisy, increase the photon search radius until it “calms down”, and then re-enable Final
Gathering.

1.7.2  Quick Guide to some Common Materials

Here are some quick rules-of-thumb for creating various materials. They each assume basic
default settings as a starting point.

1.7.2.1 General Rules of Thumb for Glossy Wood, Flooring, etc.

This is the kind of “hybrid” materials one run into in many architectural renderings; lacquered
wood, linoleum, etc.

For these materials brdf_fresnel should be off (i.e. we define a custom BRDF curve). Start
out with brdf_0_degree_refl of 0.2 amd brdf_90_degree_refl of 1.0 and apply some suitable
texture map to the diffuse. Set reflectivity around 0.5 to 0.8.

How glossy is the material? Is reflections very clear or very blurry? Are they Strong or Weak?

e For clear, fairly strong reflections, keep refl_gloss at 1.0

e For slightly blurry but strong reflections, set a lower refl_gloss value. If performance
becomes an issue try using refl_interpolate.

e For slightly blurry but also very weak reflections one can often “cheat” by setting a lower
refl_gloss value (to get the broader highlights) but set refl_samples value to 0. This
shoots only one mirror ray for reflections - but if they are very weak, one can often not
really tell.

e For medium blurry surfaces set an even lower refl_gloss and maybe increase the
refl_samples. Again, for performance try refl_interpolate.
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e For extremely blurry surfaces or surfaces with very weak reflections, try using the
refl_hl_only mode.

A typical wooden floor could use refl_gloss of 0.5, refl_samples of 16, reflectivity of 0.75,
a nice wood texture for diffuse, perhaps a slight bump map (try the no_diffuse_bump
checkbox if bumpiness should appear only in the lacquer layer).

A linoleum carpet could use the same but with a different texture and bump map, and probably
with a slightly lower reflectivity. and refl_gloss.

1.7.2.2 Ceramics

Ceramic materials are glazed, i.e. covered in a thin layer of transparent material. They follow
similar rules to the general materials mentioned above, but one should have brdf_fresnel on
and the refr_ior set at about 1.4 and reflectivity at 1.0.

The diffuse should be set to a suitable texture or color, i.e. white for white bathroom tiles.

1.7.2.3 Stone Materials

Stone is usually fairly matte, or has reflections that are so blurry they are nearly diffuse. The
“powdery” character of stone is simulated with the diffuse_roughness parameter - try 0.5
as a starting point. Porous stone such as bricks would have a higher value.

Stone would have a very low refl_gloss (lower than 0.25) and one can most likely use
refl_hl_only to good effect for very good performance. Use a nice stone texture for diffuse,
some kind of bump map, and perhaps a map that varies the refl_gloss value.

The reflectivity would be around 0.5-0.6 with brdf_fresnel off and brdf_0_degree_refl at
0.2 and brdf 90_degree_refl at 1.0

1.7.2.4 Glass

Glass is a dielectric, so brdf_fresnel should definitely be on. The IOR of glass is around 1.5.
Set diffuse_weight to 0.0, reflectivity to 1.0 and transparency to 1.0. This is enough to
create basic, completely clear refractive glass.

If this glass is for a window pane, set thin_walled to on. If this is a solid glass
block, set thin_walled to off and consider if caustics are necessary or not, and set
do_refractive_caustics accordingly.

Is the glass frosted? Set refr_gloss to a suitable value. Tune the refr_samplesfor good
quality or use refr_interpolate for performance.
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1.7.2.5 Colored Glass

For clear glass the tips in the previous section work. But colored glass is a slightly different
story.

Many shaders set the transparency at the surface of the glass. And indeed this is what happens
if one simply sets a refr_color to some value, e.g. blue. For glass done with thin_walled
turned on this works perfectly. But for solid glass objects this is not an accurate representation
of reality.

Study the following example. It contains two glass blocks of very different size and a sphere
with a spherical hole inside of it'* plus a glass horse.

With a blue refr_color: Glass with color changes at the surface

The problems are evident:

e The two glass blocks are of completely different thickness, yet they are exactly the same
level of blue.

e The inner sphere is darker than the outer.

Why does this happen?

Consider a light ray that enters a glass object. If the color is “at the surface”, the ray will be
colored somewhat as it enters the object, retain this color through the object, and receive a
second coloration (attenuation) when it exits the object:

14 Created by inserting a second sphere with the normals flipped inside the outer sphere. Don’t forget to flip
normals of such surfaces or they will not render correctly!
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Diagram for glass with color changes at the surface

In the illustration above the ray enters from the left, and at the entry surface it drops in level
and gets slightly darker (bottom of graph schematically illustrates the level). It retains this
color throughout the travel through the medium and drops in level again at the exit surface.

For simple glass objects this is quite sufficient. For any glass using thin_walled it is by
definition the correct thing to do, but for any complex solid it is not. It is especially wrong for
negative spaces inside the glass (like the sphere in our example) because the light rays have
to travel through four surfaces instead of two (getting two extra steps of “attenuation at the
surface”)

In real colored glass, light travels through the medium and is attenuated “as it goes”.
In the mia_materialthis is accomplished by enabling the refr_falloff_dist and use the
refr_falloff_color and setting the refr_color to white. This is the result:
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Glass with color changes within the medium

The above result is clearly much more satisfactory; the thick glass block is much deeper blue
than the thin one, and the hollow sphere now looks correct. In diagram form it looks as
follows:

d=refr_falloff_dist where attenuation is refr_falloff_color

The ray enters the medium and during it’s entire travel it is attenuated. The strength of the
attenuation is such that precisely at the refr_falloff_dist (d in the figure) the attenuation
will match that of refr_falloff_color (i.e. at this depth the attenuation is the same as was
received immediately at the surface with the previous model). The falloff is exponential such
that at double refr_falloff_dist the effect is that of refr_falloff_color squared, and so on.
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There is one minor trade off:

To correctly render the shadows of a material using this method one must either use caustics
or make sure mental ray is rendering shadows in “segment” shadow mode.

Using caustics naturally gives the most correct looking shadows (the above image was not
rendered with caustics), but will require that one has caustic photons enabled and a physical
light source that shoots caustic photons.

On the other hand, the mental ray “segment” shadows have a slightly lower performance than
the more widely used “simple” shadow mode. But if it is not used, there shadow intensity will
not take the attenuation through the media into account properly'®.

1.7.2.6 Water and Liquids

Water, like glass, is a dielectric with the IOR of 1.33. Hence, the same principles as for glass
(above) applies for solid bodies of water which truly need to refract things... for example
water running out of a tap. Colored beverages use the same principles as colored glass, etc.

Pt

Water into Wine

To create a beverage in a container as in the image above, it is important to understand how
the mia_material handles refraction through multiple surfaces vs. how the “real world” tackles
the same issue.

What is important for refraction is how the transition from one medium to another with a
different IOR. Such a transition is known as an interface.

15But it could potentially still look “nice”.
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For lemonade in a glass, imagine a ray of light travelling through the air (IOR = 1.0) enter
the glass, and is refracted by the IOR of the glass (1.5). After travelling through the glass the
ray leaves the glass and enters the liquid, i.e. it passes an interface from one medium of IOR
1.5 to another medium of IOR 1.33.

One way to model this in computer graphics is to make the glass one separate closed surface,
with the normals pointing towards the inside of the glass and an IOR of 1.5, and a second,
closed surface for the beverage, with the normals pointing inwards and an IOR of 1.33, and
leaving a small “air gap” between the container and the liquid.

While this “works”, there is one problem with this approach: When light goes from a higher
IOR to a lower there is a chance of an effect known as “Total Internal Reflection” (TIR). This
is the effect one sees when diving in a swimming pool and looking up - the objects above the
surface can only be seen in a small circle straight above, anything below a certain angle only
shows a reflection of the pool and things below the surface. The larger the difference in the
IOR of the two media, the larger is the chance of TIR.

So in our example, as the ray goes from glass (IOR=1.5) to air, there is a large chance of TIR.
But in reality the ray would move from a medium of IOR=1.5 to one of IOR=1.33, which is
a much smaller step with a much smaller chance of TIR. This will look different:

Correct refraction (left) vs. the “air gap” method (right)

The result on the left is the correct result, but how it is obtained?

The solution to the problem is to rethink the modeling, and not think in terms of media,
but in terms of interfaces. In our example, we have three different interfaces, where we can
consider the IOR as the ratio between the IOR’s of the outside and inside media:

o Air-Glass interface (IOR = 1.5/1.0 = 1.5)
e Air-Liquid interface (IOR = 1.33/1.0 = 1.33)
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e Glass-Liquid interface (IOR=1.33/1.5=0.8)

It is evident that in the most common case of an interface with air, the IOR to use is the
IOR of the media (since the IOR of air is 1.0), whereas in an interface between two different
media, the situation is different.

To correctly model this scenario, we then need three surfaces, each with a separate
mia_material applied:

M M

t

o = i

The three interfaces for a liquid in a glass

e The Air-glass surface (blue), with normals pointing out of the glass, covering the area
where air directly touches the glass, having an IOR of 1.5

e The Air-liquid surface (green), with normals pointing out of the liquid, covering the
area where air directly touches the liquid, having an IOR of 1.33

e The Glass-liquid surface (red), with normals pointing out of the liquid, covering the
area where the glass touches the liquid, having an IOR of 0.8

By setting a suitable refr_falloff_dist and refr_falloff_color for the two liquid materials (to
get a colored liquid), the image on the left in the comparison above is the result.

1.7.2.7 The Ocean and Water Surfaces

A water surface is a slightly different matter than a visibly transparent liquid.
The ocean isn’t blue - it is reflective. Not much of the light that goes down under the surface
of the ocean gets anywhere of interest. A little bit of it is scattered back up again doing a

little bit of very literal “sub surface scattering”.

To make an ocean surface with the mia_material do the following steps:
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Set diffuse_weight to 0.0, reflectivity to 1.0 and transparency to 0.0 (yes, we do not use
refraction at all!).

Set the refr_ior to 1.33 and brdf_fresnel to on. Apply some interesting wobbly shader to
bump and our ocean is basically done!

This ocean has only reflections guided by the IOR. But this might work fine - try it. Just
make sure there is something there for it to reflect! Add a sky map, objects, or a just a blue
gradient background. There must be something or it will be completely black.

The Ocean isn’t blue - the sky is

For a more “tropical” look, try setting diffuse to some slight greenish/blueish color, set the
diffuse_weight to some fairly low number (0.1) and check the no_diffuse_bump checkbox.

Now we have a “base color” in the water which emulates the little bit of scattering occurring
in the top level of the ocean.



54 1 Architectural and Design Visualization Shader Library

Enjoy the tropics

1.7.2.8 Metals

Metals are very reflective, which means they need something to reflect. The best looking
metals come from having a true HDRI environment, either from a spherically mapped HDRI
photo'®, or something like the mental ray physical sky.

To set up classic chrome, turn brdf_fresnel off, set reflectivity to 1.0, brdf_0_degree_refl
to 0.9 and brdf 90_degree_refl to 1.0. Set diffuse to white and check the refl_is_metal
checkbox.

This creates an almost completely reflective material. Tweak the refl_gloss parameter for
various levels of blurry reflections to taste. Also consider using the “round corners” effect,
which tend to work very well on metallic objects.

Metals also influence the color of their reflections. Since we enabled refl_is_metal this is
already happening; try setting the diffuse to a “gold” color to create gold.

Try various levels of refl_gloss (with the help of refl_interpolate for performance, when
necessary).

One can also change the reflectivity which has a slightly different meaning when
refl_is_metal is enabled; it blends between the reflections (colored by the diffuse) and normal
diffuse shading. This allows a “blend” between the glossy reflections and the diffuse shading,
both driven by the same color. For example, an aluminum material would need a bit of diffuse
blended in, whereas chrome would not.

16Many HDRI images are available online.
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Gold, silver and copper, perhaps?

1.7.2.9 Brushed Metals

Brushed metal is an interesting special case of metals. In some cases, creating a brushed
metal only takes turning down the refl_gloss to a level where one receives a “very blurred”
reflection. This is sufficient when the brushing direction is random or the brushes are too
small to be visible even as an aggregate effect.

For materials that have a clear brushing direction and/or where the actual brush strokes are
visible, creating a convincing look is a slightly more involved process.

The tiny grooves in a brushed metal all work together to cause anisotropic reflections. This
can be illustrated by the following schematic, which simulates the brush grooves by actually
modeling many tiny adjacent cylinders, shaded with a simple Phong shader:
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Many small adjacent cylinders

As one can see, the specular highlight in each of the cylinders work together to create an
aggregate effect which is the anisotropic highlight.

Also note that the highlight isn’t continuous, it is actually broken up in small adjacent
segments. L.e. the main visual cues that a material is “brushed metal’ are:

e Anisotropic highlights that stretch out in a direction perpendicular to the brushing
direction.

e A discontinuous highlight with “breaks” in the brushing direction.

Many attempts to simulate brushed metals have only looked at the first effect, the anisotropy.
Another common mistake is to think that the highlight stretches in the brushing direction.
Neither is true.

Hence, to simulate brushed metals, we need to simulate these two visual cues. The first one is
simple; use anisotropy and anisotropy_rotationto make anisotropic highlights. The second
can be done in several ways:

e With a bump map
e With a map that varies the anisotropy or refl_gloss

e With a map that varies the refl_color
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Each have advantages and disadvantages, but the one we will try here is the last one. The
reason for choosing this method is that it works well together with interpolation.

1. Create a map for the “brush streaks”. There are many ways to do this, either by painting
a map in a paint program, or by using a “Noise” map that has been stretched heavily
in one direction.

2. The map should vary between middle-gray and white. Apply this map to the refl_color
in a scale suitable for the brushing.

3. Set diffuse to white (or the color of the metal) but set diffuse_weight to 0.0 (or a small
value).

4. Make sure refl_is_metal is enabled.
5. Set refl_gloss to 0.75.

6. Set anisotropy to 0.1 or similar. Use anisotropy_rotation to align the highlight
properly with the map. If necessary use anisotropy_channel to base it on the same
texture space as the map.

Brushed Metal






Chapter 2

Sun and Sky

2.1 Introduction

The mental ray physical sun & sky shaders are designed to enable physically plausible daylight
simulations and very accurate renderings of daylight scenarios.

The mia_physicalsun and mia_physicalsky are intended to be used together, with the
mia_physicalsun shader applied to a directional light that represents the sun light, and the
mia_physicalsky shader used as the scenes camera environment shader. The environment
shader should be used to illuminate the scene with the help of Final Gathering (which must
be enabled) and bounced light from the sun can be handled either by final gather diffuse
bounces, or via GI (photons).

For improving quality in indoor shots, the sky can be combined with the mia_portal_light
shader described on page 67.

2.2 Units

The sun and sky work in true photometric units, but the output can be converted to something
else with the rgb_unit_conversion parameter.

If it is set to 1 1 1, both the values returned by the mental ray shader API functions
mi-sample_light (for the sunlight) and mi_compute_avg_radiance (for the skylight), when sent
through the mi_luminance function, can be considered as photometric illuminance values in
luz.

Since the intensity of the sun outside the atmosphere is calibrated as a 5900 degrees Kelvin
blackbody radiator providing an illuminance of 127500 lux, this is wvery bright when seen
compared to a more “classical” rendering where light intensities generally range from 0 to 1.
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The rgb_unit_conversion parameter is applied as a multiplier and could be set to a
value below 1.0 (e.g. 0.001 0.001 0.001) to convert the raw lux value to something more
“manageable”.

For convenience, the special rgb_unit_conversion value of 0 0 0 is internally set so that
80000 lux (approximately the amount of light on a sunny day) equals the classical light level
of 1.0.

An interesting alternative is to set rgb_unit_conversion to 0.318 0.318 0.318. Then the
final rendered pixels in the image (when rendered with mia_material or shaders following that
shading convention and when sent through the mi_luminance function) are true photometric
luminance values in candela per square meter?!.

These true luminance values then fit perfectly as input to the photographic tone mapper
described on page 79.

2.3 Important Note on Fast SSS and Sun&Sky

To use the mental ray fast SSS shaders together with the high dynamic range indirect sun
and skylight, it is very important to turn on the Indirect parameter so the SSS shader can
scatter the skylight (which is considered indirect).

It is equally important to turn off the Screen composit parameter (otherwise the output of
the SSS shaders are clamped to a low dynamic range and will appear to render black).

2.4 Common Parameters

Some parameters exist both in the mia_physicalsun and mia_physicalsky and all do the same
thing. For physical correctness, it is necessary to keep these parameter in sync with each
other in both the sun and sky. For example, a sun with a different haze value than the sky
cannot be guaranteed to be physically plausible.

!The value 0.318 (1/pi) originates from the illuminance/luminance ratio of a theoretically perfect
Lambertian reflector.



2.4 Common Parameters 61

The most important common parameters are those that drive the entire shading- and
colorization model:

e haze sets the amount of haze in the air. The range is from 0 (a completely clear day)
to 15 (extremely overcast, or sandstorm in sahara). The haze influences the intensity
and color of the sky and horizon, intensity and color of sunlight, softness of the suns
shadows, softness of the glow around the sun, and the strength of the aerial perspective.

e redblueshift gives artistic control over the “redness” of the light. The default value
of 0.0 is the physically correct value?, but can be changed with this parameter which
ranges from -1.0 (extremely blue) to 1.0 (extremely red).

el
Redness=-0.3

2Calculated for a 6500K whitepoint.
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e saturation is also an artistic control, where 1.0 is the physically calculated saturation
level. The parameter ranges from 0.0 (black and white) to 2.0 (extremely boosted

saturation)

2.5  Sun Parameters

The mia_physicalsun is responsible for the color and intensity of the sunlight, as well as
emitting photons from the sun. The shader should be applied as light shader and photon
emission shader on a directional light source (it does not work on any other light type).

declare shader "mia_physicalsun" (

boolean
scalar
color
scalar
scalar
scalar
scalar
scalar
integer
vector
vector
boolean
boolean

version 5
apply light

end declare

Ilonll

"multiplier"
"rgb_unit_conversion"
"haze"
"redblueshift"
"saturation"
"horizon_height"
"shadow_softness"
"samples"
"photon_bbox_min",
"photon_bbox_max",

default
default
default
default
default
default
default
default
default

"automatic_photon_energy",

"y_is_up"
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As mentioned above, the mia_physicalsun contains several of the common parameters that
are exposed in the mia_physicalsky as well (haze, redblueshift etc.). The value of these
parameters for the mia_physicalsun should match those in the mia_physicalsky.

The parameters specific to the mia_physicalsun are as follows:

e samples is the number of shadow samples for the soft shadows. If it is set to 0, no soft
shadows are generated.

e shadow_softness is the softness for the soft shadows. A value of 1.0 is the value which
matches the softness of real solar shadow most accurately. Lower values makes the

shadows sharper and higher softer.

When photon_bbox_min and photon_bbox_max are left set to 0,0,0 the photon
bounding box will be calculated automatically by the shader. If these are set, they define
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a bounding box in the coordinate system of the light within which photons are aimed.
This can be used to “focus” GI photons on a particular area-of-interest. For example, if
one has modelled a huge city as a backdrop, but is only rendering the interior of a room,
mental ray will by default shoot photons over the entire city and maybe only a few will
find their way into the room. With the photon_bbox_max and photon_bbox_min
parameters one can focus the photon emission of the mia_physicalsunto only aim at
the window in question, greatly speeding up and enhancing the quality of the interior
rendering.

automatic_photon_energy enables automatic photon energy calculation. When this
is on, the light source does not need to have a valid energy value that matches that of
the sun (it does, however, need a nonzero energy value or photon emission is disabled
by mental ray). The correct energy and color of the photons will be automatically
calculated. If this parameter is off, the photons will have the energy defined by the
lights energy value.

2.6 Sky Parameters

The mia_physicalsky shader is responsible for creating the color gradient that represent the
atmospheric skydome, which is then used to light the scene with the help of Final Gathering
and/or sky portals (page 67). The mia_physicalsky, when used as an environment shader, also
show the sky to the camera and in reflections.

mia_physicalsky also creates a virtual ground plane that exists “below” the model. This makes

it unnecessary to actually model geometry all the way to the horizon line - the virtual ground
plane provides both the visuals and the bounce-light from such ground.

declare shader "mia_physicalsky" (

boolean "on" default on,

scalar "multiplier" default 1.0,

color "rgb_unit_conversion" default 0.0001 0.0001 0.0001,
scalar "haze" default 0.0,

scalar "redblueshift" default 0.0,

scalar '"saturation" default 1.0,

scalar "horizon_height" default 0.0,

scalar "horizon_blur" default 0.1,

color "ground_color" default 0.2 0.2 0.2,

color "night_color" default 0 0 O,

vector "sun_direction",
light "sun",

# The following parameters are only useful
# when the shader is used as environment

scalar "sun_disk_intensity" default 1.0,
scalar "sun_disk_scale" default 4.0,
scalar "sun_glow_intensity" default 1.0,
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)

boolean "use_background",
shader "background",

# For the lens/volume shader mode
scalar "visibility_distance",

boolean "y_is_up",
integer "flags"

version 4

apply environment, texture, lens, volume

end declare

on turns the shader on or off. The default is on.
multiplier is a scalar multiplier for the light output. The default is 1.0.

rgb_unit_conversion allows setting the units, described in more detail above. The
special value of 0 0 0 matches 80000 lux (light level on a sunny day) to the output value
1, suitable for low dynamic range rendering.

horizon_height sets the “level” of the horizon. The default value of 0.0 puts the horizon
at standard “height”. But since the horizon is infinitely far away this can cause trouble
joining up with any finite geometry that is supposed to represent the ground. It can also
cause issues rendering locations that are supposed to be at a high altitude, like mountain
tops or the top of New York skyscrapers where the horizon really is visibly “below” the
viewer.

This parameter allows tuning the position of the horizon. Note that the horizon doesn’t
actually exist at any specific “height” in 3D space - it is a shading effect for rays that
go below a certain angle. This parameter tweaks this angle. The total range available
range is somewhat extreme, reaching from -10.0 (the horizon is “straight down”) to 10.0
(the horizon is at the zenith)! In practice, only much smaller values are actually useful,
like for example -0.2 to push the horizon down just below the edge of a finite visible
ground plane.

Note: The horizon_height affects not only the visual representation of the horizon in
the mia_physicalsky shader, but also the color of the mia_physicalsun itself, i.e. the point
where the sun “sets” will indeed change for a nonzero horizon_height.

horizon_blur sets the “blurriness” with which the horizon is rendered. At 0.0 the
horizon is completely sharp. Generally low values (lower than 0.5) are used, but the full
range is up to 10.0 for a horizon which only consists of blur and no actual horizon at all.
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horizon_height=0.0, horizon_blur=0.0 horizon_height=-0.3, horizon_blur=0.2
e ground_color is the color of the wvirtual ground plane. Note that this is a diffuse

reflectance value (i.e. albedo). The ground will appear as if it was a Lambertian reflector
with this diffuse color, lit by the sun and sky only, does not receive any shadows.

Red ground Green ground

Note in the above images how bounce-light from the ground tints the walls of the house.
Also note that the virtual ground plane does not receive shadows.

Many sky models neglect the influence from bounce light from the ground, assuming
only the sky is illuminating the scene. To compare the output if the mia_physicalsky
with e.g. the IES sky model one must therefore set the ground_color to black.

e night_color is the minimum color of the sky - the sky will never become darker than
this value. It can be useful for adding things like moon, stars, high altitude cirrus clouds
that are lit long after sunset etc. As the sun sets and the sky darkens, the contribution
from night_color is unaffected and remains as the “base light level”.

e sun_direction is the direction of the sun disk when specified manually. If the sun
parameter is used, this parameter is ignored.

e sun is the way to automatically set the sun direction. It should be the tag of the light
instance that contains the directional light that represents the sun - i.e. the same light
that has the mia_physicalsunshader. This will make the visible sun disk automatically
follow the direction of the actual sunlight.

o Aerial Perspective is a term used by painters to convey how distant objects are perceived
as hazier and tinted towards the blue end of the spectrum. mia_physicalsky emulates this
with the visibility_distance parameter. When nonzero, it defines the “10% distance”,
i.e. the distance at which approximately 10% of haze is visible at a haze level of 0.0.

To use this effect, the shader must be applied as either a lens or camera volume shader.
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e y_is_up defines what constitutes “up”. Some OEM integrations of mental ray considers
the Z axis “up” and hence this parameter should be off - others consider the Y axis
“up” and in that case this parameter should be on.

e flags is for future expansion, testing and internal algorithm control. Should be set to
ZETO.

It is important to note that the mia_physicalsky shader treats rays differently. Direct rays
from the camera, as well as reflection and refraction rays see the “entire” effect, including the
“sun disk” described below. But since the lighting already has a direct light that represents

the sun (using the mia_physicalsun shader) the sun disk is not visible to the finalgather rays
3

These parameters do not affect the Final Gathering result, only the “visible” result, i.e. what
the camera sees and what is seen in reflection and refraction:

e sun_intensity and glow_intensity is the intensity of the visible sun disk and it’s glow,
which can be used to tune the “look” of the sun.

glow_intensity=>5 glow_intensity=0.1

e sun_scale sets the size of the visible sun disk. The value 1.0 is the “physically correct”
size, but due to the fact that people tend to misjudge the proper size of the sun in
photographs, the default is the slightly more visually pleasing 4.0

sun_scale=1 sun_scale=4

3This would otherwise cause noise in the Final Gathering solution and too much light added to the scene.
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e When use_background is enabled but no background has been set, the background
of the rendering will be transparent black, i.e. suitable for external compositing. If a
background shader is supplied, the background of the rendering will come from that
shader (for example a texture shader that looks up a background photograph of a real
location or similar). In either case the mia_physicalsky will still be visible in refractions
and reflections.

2.7 Sky- and Environment Portals

2.7.1 The Problem

A classic problem in computer graphics is lighting a scene solely through indirect light, like
from a sky, or other “environment” light from an acquired HDRI or similar.

This is accomplished in mental ray using Final Gathering (henceforth abbreviated as FG),
and is done by tracing a large number of “FG rays” to see which hit the environment (or other
lit surfaces). Since this is a large number of rays, the results are cached (for performance) at
FG points and the result is interpolated, “smoothing” the result.

This all works very well when there is a lot of fairly uniform light that is “seen” by the FG
rays. In general, FG gives the best result when the light levels in a scene is fairly uniform; it
works well to illuminate an outdoors scene by the sky (most FG rays “see” the sky), and it
works well to bounce secondary light in a room in which most surfaces are lit by direct lights
(most FG rays “see” some already-lit surface).

However, a scene of a dark room with no lights, and a single window only exposed to the sky
is more problematic:

| N

\
Sky-lit outdoor: Good Well-lit indoor: Good Sky-lit indoor: Problem

In the image on the right, almost all FG rays will “see” blackness and only a select few will
be able to “escape” through the narrow window to hit the sky. To resolve this accurately one
need to shoot very many FG rays, which has a negative impact on performance.
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A further difference is that in the first two scenes (the outdoor scene and the well-lit interior)
there are already direct lights which cause high-quality direct shadows, which resolves the
details in the scene; FG is only used for additional bounce- or sky-lighting, and doesn’t provide
the bulk of the lighting. Therefore, any “over-smoothing” caused by the interpolation of FG
points is drowned out by other lights (or can be resolved with AO in mia_material).

But the rightmost scene does not have that luxury, all light is indirect skylight. Any over-
smoothing due to interpolation will be clearly visible, which means that one needs both a high
FG ray count and a high FG point density to create a pleasing render, which gives longer
render times.

A common technique used by many people doing interior renderings is to put an area light in
the window, to provide the sky-lighting rather than rely on FG to “find” the sky. But this
gives rise to the question “how bright and what color should this light be?”.

2.7.2 The Solution

To solve all these issues the concept of a portal light is introduced. The portal light is a
(rectangular) area light which is placed in the window, which obtains it’s proper intensity and
color from the sky outside the window (i.e. an environment shader, like mia_physicalsky or
similar) and how much of that sky that is “seen”?.

Practically, this makes the portal light behave as a “FG concentrator” so instead of having to
send thousands of FG rays around the scene to “find” the window, the portal light actually
blocks FG rays, and instead converts light from beyond the window to direct light, with high-
quality area shadows with no interpolation related issues possible.

FG will now see a well lit room rather than a black room, and can be performed at much
lower FG ray counts. Furthermore, since the light from the window is now direct, we gain one
extra light bounce “for free”.

2.7.2.1 mia_portal_light

The mia_portal_light shader should be applied both as light- and photon emitter shader on
a rectangular area light. The mental ray light instance must be set to be wvisible (this is a
technical requirement for the portal light to be able to “block” final gather rays. If the light
actually is visible or not in the rendering is instead handled by the shader).

Furthermore, the mental ray light instance must be set up such that the rectangular area light
is extended in the X/Y plane of the lights own coordinate space, and any transformation of

the light must be handled with the light instance’s transform®.

The following parameters exist:

4The subtended solid angle of the window as seen from the shading point.
5This is how most OEM application already sets up the mental ray area light instances.
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declare shader "mia_portal_light" (

boolean "on" default on,
scalar "multiplier" default 1.0,
color "tint_color" default 1 1 1,
boolean "reverse" default off,
scalar "cutoff_threshold" default 0.005,
boolean "shadows" default true,

boolean "use_custom_environment" default off,
shader '"custom_environment",

boolean "visible" default off,
boolean "lookup_using_fg_rays"  default on,
scalar "shadow_ray_extension" default 0.0,
boolean "emit_direct_photons" default off,
color "transparency" default 1 1 1
)
version 9

apply light, emitter
end declare

on enables or disables the light.

multiplier sets the intensity and tint_color modifies the light color. When it is white, and
the multiplier is 1.0, the light emitted is equal in intensity (and color) to the environment
light that FG would have seen if allowed to send many thousands of FG raysS.

The light normally shines in the positive Z direction of the light instance’s coordinate space.
If reverse is on, it shines in the negative Z direction.

cutoff_threshold is a performance optimization option. Any light below this level is ignored,
and no shadow rays are traced (which is what consumes the bulk of the render time of an area
light). Of course, this makes the scene slightly darker since light is ignored, but can save a lot
of excess render time.

shadows can turn shadows on and off.

If use_custom_environment is off, the shader looks in the global camera environment for
the color of the light. If it is on, it calls the shader passed as custom_environment to find
the color.

Tip: While the shader is intended to be a portal to an environment, one can also treat it as a
“light card” shader by putting a shader returning a solid color as the custom_environment,
for example using mib_blackbody creates a light card with a given color temperature.

If use_custom_environment is off and no custom_environment is actually passed, the
shader behaves as a white light card.

visible defines if the light emitting surface is visible or not. When off, eye rays, reflection
rays etc. go straight through so the portal light itself remains unseen (and we still “see”

6For FG filter 0, the unbiased mode.
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out the window). When on, the actual light emitting surface becomes visible to eye rays,
reflection rays etc (and one do not “see” out the window any more, although one still “see”
the environment shaders result). The on mode is useful when using mia_portal_light as a light
card shader.

When lookup_using _fg rays is off, the environment shader is looked up with a normal call
to mi_trace_environment(). However, some shaders behave differently if they are called by
an FG ray or by another ray (the mia_physicalsky shader, for example, does not show the
“image” of the visible sun to FG rays). Since the idea of mia_portal_light is to act as an “FG
concentrator” it should therefore follow that behaviour. So when lookup_using fg_rays is
on, it calls the environment with the ray type set to miRAY_FINALGATHER, so that shaders
that switch behaviour based on this can return the color appropriate for a FG ray.

If shadow_ray_extension is zero, the shader begins tracing shadow rays “at” the light. When
positive, the shadow rays actually start that distance “outdoors”. So if there is a large object
just outside the window, it’s shadow will be taken into account. Conversely, a negative value
allows the shadow rays to begin that distance inside the window, which can allow them to
“skip” over troublesome geometry near the window (flowers, curtains) that would otherwise
just introduce noise into the shadows.

If emit_direct_photons is on, the light only shoots direct photons, and does not actually
emit any direct light at all.

The transparency parameters has two functions.

e When visible is on, it is a multiplier to the “visible color” of the area light. When this is
white, the directly “visible” color is the one dictated by the laws of physics for a surface
that emits that amount of light.

Changing the parameter away from white allows one to artificially change the balance
between the visible result (which is changed by changing this parameter) and the
intensity of the emitted light (which is not affected by this parameter). This can be
useful to avoid noise

e If visible is off it defines the transparency of the area light.

This allows the mia_portal_light shader to double as a “gel” on the window, to subdue
the intensity of what is seen outdoors, which otherwise tends to appear overexposed and
blown out. The actual emitted light intensity is not affected by this, nor does this affect
the intensity of other light rays travelling through the window, it only affects what is
visible to the eye, in refractions or reflections.

2.7.3 Examples

In this section we will examine the benefits of using the portal lights compared to what has
been possible in previous versions of mental ray.
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We are using the following scene”:

Our scene, using the portal lights, GI and FG.

The scene is only lit by the sun and sky, there are no light sources inside the room of any
kind.

2.7.3.1 Without Portal Lights

To clearly demonstrate what is direct and indirect light in the scene, we here show the scene
with portals, GI and FG turned off:

The direct lighting of our scene

The above image shows the isolated direct light. This means that this result is what FG will
“see” - an extremely high-contrast scene consisting of complete blackness, the hotspot of the

"Large parts of the example scene geometry is provided courtesy of Giorgio Adolfo Krenkel.



72 2 Sun and Sky

direct sunlight on the floor, and the very bright sky, and sun-lit ground outside - a sub-optimal
input to the FG algorithm.

If we turn on FG on relatively low settings we get:

FG with 50 rays and density 0.1

This image wins no beauty awards. It is splotchy, the shelves seem to “float” away from the
wall, but most surprisingly, it’s very dark. Why is that?

The reason is the high contrast input. FG contains a filter that is intended to avoid a speckled
result if some stray FG rays hit a single extremely bright object, so the filter removes the
brightest rays. But our scene really is high contrast, and we actually ezpect some rays to be
much brighter than others.

Using FG filter = 0

In our case the filter actually is fighting what we are trying to do. We can turn off the filter,
as in the image above, which helps our light distribution some, but not the splotches, nor the
“disconnect” of the shelves to the wall.
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Since we are using mia_material, we have a built in ambient occlusion to help in exactly these
situations. However, turning that up only helps partially:

Adding AO - helps a bit

The lone solution available in the past was to simply increase the quality of the FG settings.
And naturally, we are using very low settings, so the bad quality is not surprising at this stage.
Lets turn up the knobs:

FG with 250 rays and density 0.8 FG with 500 rays and density 1.5

Yes, increasing the number of rays and the density helps but it hurts our render time a lot.
Even at the high setting we are still not near the optimal result. We would have to go even
higher to resolve all the deatil!

Lets back down from the high FG settings for a moment and concentrate on light transport.
The scene is still very dark, because we are only getting a single FG bounce, and since the
lighting from the sky is indirect we get no bounce of that light! Meaning: In this scene, the
sunlight is bouncing once, but the skylight is not bouncing at all!

Lets turn up the number of bounces to 3:
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FG with 3 bounces

This gave us more light. Due to the fact we stepped back from our “high” FG settings, the
lighting isn’t smooth and lacks any detail.

Using FG multi-bounce is just one of the ways mental ray can transport light in a scene. The
alternative is to use Photons (GI). But keep in mind that when Photons are enabled, FG goes
back to a single bounce, letting photons handle all the remaining bounces:

FG with GI (Photons)

Now something odd happened; the color shifted towards yellow. Why is that? This is because
the sky does not generate any photons. So we now have multiple good-quality bounces of the
sun, but we are back to zero bounces of the sky!
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2.7.3.2 With Portal Lights

Now lets turn to the portal lights. First lets turn all FG and GI off, and simply add a portal
light to the window with it’s default settings. The resulting image is this:

The portal light only, no FG or Photons

Color wise this looks very similar to our early FG results above, but the level of detail is much
higher. Since no interpolation is going on, the shelves sit securely on the walls. All shadows
contain the subtlest of details.

Since this is now direct light it will be picked up by FG when that is turned on. Let us compare
what FG would “see” with, and without the portal lights:

(NN

Without portal lights With portal lights

The left is the super-high contrast result FG would “see” without portals, but the right is a
fairly well balanced scene. And not only is it already filled with subtle direct light - the sky
itself is actually invisible to FG, so it never has to carry the burden of hitting a high contrast
area® and the problem with the final gather filter pretty much disappears.

The second feature of the portal lights being direct is that if we turn FG back on, we now get
once bounce of light “for free”:

8 Although FG rays that directly hit the pool of light on the floor caused by the sun will indeed see a high
contrast.
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One free bounce of sky lighting, courtesy of the portal lights

Notice how the wall inside the window now has some bounce light on it from the sky light,
even though we are using FG with a single bounce!

Using portal lights and 3 diffuse bounces Using GI (Photons)

Turning on multiple diffuse bounces (on the left) makes the image come alive. Turning on
GI (Photons) now yields a much more balanced image because the portal lights actually shoot
photons! No longer is there the big skewing in favor of bounced sun light, the sky light will
bounce equally well in the form of photons.

Finally, turning on one of the indoor lights, and utilizing the portal lights transparency
parameter to combat the overexposure of the outdoor view, we get a final image:
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A final image

In conclusion: The portal lights help...

e ...reducing render time (by reducing the need for using extremely high FG settings).

e ..maintain the light balance in the scene (by converting environment light to photons,
which can bounce around indoors just as well as sun light).

e ...increase the quality of the sky lighting, making smooth areas smooth and blotch-free,
as well as revealing the most minute detail with full fidelity.

...dramatically reduce scene set-up time (by requiring little to no tweaking, always
generating the “optimal” image out-of-the-box).
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The subtle interplay of skylight, courtesy of the portal lights



Chapter 3

Camera- and Exposure Effects

3.1 Tone Mapping

When rendering physical light levels one runs into the problem of managing the HDRI output
of the real physics vs. the limited dynamic range of computer displays. This was discussed in
more detail on page 3.

—

Going from this... ...to this.

There are numerous shaders and algorithms for doing “tone mapping” (this is a very active
area of research within the CG industry), and the architectural library provides two: One very
simple shader that simply adds a knee compression to “squash” over-brights into a manageable
range, and a more complex “photographic” version that converts real photometric luminances
with the help of parameters found on a normal camera into an image.

These shaders can be applied either as a lens shaders (which will tone map the image “on the
fly” as it is being rendered) or as output shaders (will tone map the image as a post process).

Since both of these tone mappers affects each pixel individually! , the former method (as lens
shader) is encouraged, since it applies on the sample level rather than the pixel level.

1Many advanced tone mappers weight different areas of the image against other areas, to mimic the way
the human visual system operates. These tone mappers need the entire image before they can “do their job”.
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Also, both of the supplied tone mappers include a gamma term. It is important to know if
one is already applying a gamma correction elsewhere in the imaging pipeline (in an image
viewer, in compositing, etc.), and if so, set it to 1.0 in these shaders. If one is not applying
gamma correction anywhere but simply displaying the image directly on screen with a viewer
that does not apply it’s own gamma, one should most likely use the gamma in these shaders,
set to a value between 1.8 and 2.4.

3.1.1 The “Simple” Tone Mapper

3.1.1.1 mia_exposure_simple

declare shader '"mia_exposure_simple" (

scalar '"pedestal" default 0.0,
scalar "gain" default 1.0,
scalar '"knee" default 0.5,
scalar "compression" default 2.0,
scalar "gamma" default 2.2,

color  texture '"preview",
boolean "use_preview"
)
version 1
apply lens, output
end declare

The operation of this tone mapper is very simple. It does not refer to real physical luminance
values in any way. It simply takes the high dynamic range color and perform these operations
in order:

pedestal is added to the color.

The color components are then multiplied with gain.

The resulting colors are checked if they are above the knee value.

If they are, they are “squashed” by the compression ratio compression

Finally, gamma correction with gamma is performed.

That’s the theory. What is the practical use of these parameters?

Changing pedestal equates to tweaking the “black level”. A positive value will add some
light so even the blackest black will become slightly gray. A negative value will subtract some
light and allows “crushing the blacks” for a more contrasty artistic effect.

gain is the “brightness knob”. This is the main point where the high dynamic range values
are converted to low dynamic range values. For example: if one knows the approximate range
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of color intensities goes between 0 and 10, this value should then be approximately 0.1 to get
this range into the desired 0-1 range.

However, the whole point of tone mapping is not to blindly linearly scale the range down.
Simply setting it to 0.1 most likely yields a dark and boring image. A much more likely value
is 0.15 or even 0.2. But a value of 0.2 will map our 0-to-10 range to 0 to 2.... what to do
about that stuff above 1.07

That’s where the compression comes in. The knee level is the point where the over-brights
begin to be “squashed”. Since this is applied after the gain, it should be in the range of 0.0
to 1.0. A good useful range is 0.5 to 0.75.

Assume we set it to 0.75. This means any color that (after having pedestal added and
multiplied by gain) that comes out above 0.75 will be “compressed”. If compression is 0.0
there is no compression. At a compression value of 5.0 the squashing is fairly strong.

Finally, the resulting “squashed” color is gamma-corrected for the output device (computer
screen etc.)

The use_preview and preview parameters are used to make the process of tweaking the
tone mapper a little bit more “interactive”.

The intended use is the following, for when the shader is applied as a lens shader:

e Disable the mia_exposure_simple shader.

e Render the image to a file in some form of HDR capable format (like .exr, .hdr or similar),
for example preview.exr.

e Enable mia_exposure_simple shader again.

e Set the preview parameter to the file saved above, e.g. preview.exr.
e Enable the use_preview parameter.

e Disable any photon mapping or final gathering.

e Re-render. The rendering will be near instant, because no actual rendering occurs at
all; the image is read from preview.exr and immediately tone mapped to screen.

e Tweak parameters and re-render again, until satisfied.
e Re-enable any photons or final gathering.
e Turn off use_preview.

e Voila - the tone mapper is now tuned.
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3.1.2 The “Photographic” Tone Mapper

3.1.2.1 mia_exposure_photographic

The photographic tonemapper converts actual pixel luminances (in candela per square meter)
into image pixels as seen by a camera, applying camera-related parmeters (like f-stops and
shutter times) for the exposure, as well as applying tonemapping that emulates film- and
camera-like effects.

It has two basic modes:

e “Photographic” - in which it assumes input values are (or can be converted to) candela
per square meter.

e “Arbitrary” - in which scene pixels are not considered to be in any particular physical
unit, but are simply scaled by a factor to fit in the display range of the screen.

If the film_iso parameter is nonzero, the “‘Photographic” mode is used, and if it is zero, the
“Arbitrary” mode is chosen.

declare shader "mia_exposure_photographic" (

scalar "cm2_factor" default 1.0,
color '"whitepoint" default 1 1 1,
scalar "film_iso" default 100,
scalar "camera_shutter" default 100.0,
scalar "f_number" default 16.0,
scalar "vignetting" default 1.0,
scalar "burn_highlights" default 0.0,
scalar "crush_blacks" default 0.25,
scalar "saturation" default 1.0,
scalar "gamma" default 2.2,

integer "side_channel_mode" default O,
string "side_channel",

color texture "preview",
boolean "use_preview"
)
version 4
apply lens, output
end declare

In “Photographic mode” (nonzero film_iso) cm2_factor is the conversion factor between
pixel values and candela per square meter. This is discussed more in detail below.
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In “Arbitrary” mode, cm2_factor is simply the multiplier applied to scale rendered pixel
values to screen pixels. This is analogous to the gain parameter of mia_exposure_simple.

whitepoint is a color that will be mapped to “white” on output, i.e. an incoming color of
this hue/saturation will be mapped to grayscale, but its intensity will remain unchanged.

film_iso should be the ISO number of the film, also known as “film speed”. As mentioned
above, if this is zero, the “Arbitrary” mode is enabled, and all color scaling is then strictly
defined by the value of cm2_factor.

camera_shutter is the camera shutter time expressed as fractional seconds, i.e. the value
100 means a camera shutter of 1/100. This value has no effect in “Arbitrary” mode.

f_ number is the fractional aperture number, i.e. 11 means aperture “f/11”. Aperture numbers
on cameras go in specific standard series, i.e. “f/8”, “f/11”, “f/16”, “f/22” etc. Each of these
are refered to as a “stop” (from the fact that aperture rings on real lenses tend to have physical
“clicks” for these values) and each such “stop” represents halving the amount of light hitting
the film per increased stop?. It is important to note that this shader doesn’t count “stops”,
but actually wants the f-number for that stop. This value has no effect in “Arbitrary” mode.

In a real camera the angle with which the light hits the film impacts the exposure, causing
the image to go darker around the edges. The vignetting parameter simulates this. When
0.0, it is off, and higher values cause stronger and stronger darkening around the edges. Note
that this effect is based on the cosine of the angle with which the light ray would hit the film
plane, and is hence affected by the field-of-view of the camera, and will not work at all for
orthographic renderings. A good default is 3.0, which is similar to what a compact camera
would generate?.

The parameters burn_highlights and crush_blacks guide the actual “tone mapping” of the
image, i.e. exactly how the high dynamic range imagery is adapted to fit into the black-to-
white range of a display device.

If burn_highlights is 1 and crush_blacks is zero, the transfer is linear, i.e. the shader
behaves like a simple linear intensity scaler only.

burn_highlights can be considered the parameter defining how much “over exposure” is
allowed. As it is decreased from 1 towards 0, high intensities will be more and more
“compressed” to lower intensities. When it is 0, the compression curve is asymptotic, i.e.
an infinite input value maps to white output value, i.e. over-exposure is no longer possible.
A good default value is 0.5.

When the upper part of the dynamic range becomes compressed it naturally loses some of
it’s former contrast, and one often desire to regain some “punch” in the image by using the
crush_blacks parameter. When 0, the lower intensity range is linear, but when raised towards

2Sometimes the f-number can be found labeled “f-stop”. Since this is ambiguous, we have chosen the term
f-number for clarity.

3Technically, the pixel intensity is multiplied by the cosine of the angle of the ray to the film plane raised
to the power of the vignetting parameter.
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1, a strong “toe” region is added to the transfer curve so that low intensities gets pushed more
towards black, but in a gentle (soft) fashion.

Compressing bright color components inherently moves them towards a less saturated color.
Sometimes, very strong compressions can make the image in an unappealingly de-saturated
state. The saturation parameter allows an artistic control over the final image saturation.
1.0 is the standard “unmodified” saturation, higher increases and lower decreases saturation.

The gamma parameter applies a display gamma correction. Be careful not to apply gamma
twice in the image pipeline. This is discussed in more detail on page 3.

The side_channel and side_channel mode is intended for OEM integrations of the shader,
to support “interactive” tweaking as well as for the case where one wants to insert an output
shader prior to the conversion to “display pixel values”.

This is accomplished by applying two copies of the shader, one as lens shader, the other as
output shader. The two shaders communicate via the “side channel”, which is a separate
floating point frame buffer that needs to be set up prior to rendering.

Valid values for side_channel_mode are:

e 0 - the shader is run normally as either lens- or output-shader.

e 1 - the lens shader will save the un-tonemapped value in the side_channel frame buffer.
The output shader will re-execute the tone mapping based on the data in the side
channel, not the pixels in the main frame buffer.

e 2 - the lens shader works as for option 1, the output shader will read the pixels from the
side_channel frame buffer back into the main frame buffer. This is useful when one
want to run third party output shaders on it that only support working on the main
frame buffer.

One may wonder, if one wants to apply the tone mapping as a post process, why not skip
applying the lens shader completely? The answer is twofold: First, by applying the lens shader
(even though it’s output is never used), one can see something while rendering, which is always
helpful. Second, the mental ray over-sampling is guided by the pixels in the main frame buffer.
If these are left in full dynamic range, mental ray may needlessly shoot thousands of extra
samples in areas of “high contrast” that will all be tone mapped down to white in the final
stage.

The use_preview and preview work exactly like in the mia_exposure_simple shader described
above.

3.1.2.2 Examples

Lets walk through a practical example of tuning the photographic tone mapper. We have a
scene showing both an indoor and outdoor area, using the sun and sky, mia_material, and a
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portal light in the window. The units are set up such that the raw pixels are in candela per
square meter.

The raw render, with no tone mapping, looks something like this:

No tone mapping

This is the typical look of a Gamma=1 un-tonemapped image. Bright areas blow out in a
very unpleasing way, shadows are unrealistically harsh and dark, and the colors are extremely
over-saturated.

Applying mia_exposure_photographic with the following settings:

"cm2_factor" 1.0,
"whitepoint" 111,
"film_iso" 100,
"camera_shutter" 100.0,
"f_number" 16.0,
"vignetting" 0.0,
"burn_highlights" 1.0,
"crush_blacks" 0.0,
"saturation" 1.0,
ugamman 2 2,

...gives the following image as a result*:

4For speedy results in trying out settings for the tone mapping shaders, try the workflow with the “preview”
parameter described on page 81.
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The “Sunny 16”7 result

The settings we used abide by the “Sunny 16” rule in photography; for an aperture of f/16,
setting the shutter speed (in fractional seconds) equal to the film speed (as an ISO number)
generates a “good” exposure for an outdoor sunny scene. As we can see, indeed, the outdoor
area looks fine, but the indoor area is clearly underexposed.

In photography, the “film speed” (the ISO value), the aperture (fnumber) and shutter time
all interact to define the actual exposure of the camera. Hence, to modify the exposure you
could modify either for the “same” result. For example, to make the image half as bright, we
could halve the shutter time, halve the ISO of our film, or change the aperture one “stop” (for
example from f/16 to /22, see page 83 for more details).

In a real world camera there would be subtle differences between these different methods, but
with this shader they are mathematically equivalent.

/8 4

Clearly the f/4 image is the best choice for the indoor part, but now the outdoor area is
extremely overexposed. This is because we have the burn_highlights parameter at 1.0,
which does not perform any compression of highlights.

burn_highlights = 0.5 burn_highlights = 0.0
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The left image subdues the overexposure some. The right image is using a burn_highlights of
zero, which actually removes any over- exposure completely. However, this has the drawback
of killing most contrast in the image, and while real film indeed performs a compression of the
over-brights, no film exists that magically removes all overexposure. Hence, it is suggested to
keep burn_highlights small, yet non-zero. In our example we pick the 0.5 value.

Real cameras have a falloff near the edges of the image known as “vignetting”, which is
supported in this shader by using the parameter of the same name:

vignetting = 5 vignetting = 11

The image on the right is interesting in that it “helps” our overexposed outdoors by the fact
that it happens to be on the edge of the image and is hence attenuated by the vignetting.
However, the left edge turns out too dark.

We will try a middle-of-the road version using a vignetting of 6 and we modify the
burn_highlights to 0.25 and get this image:

vignetting = 6 burn_highlights = 0.25

This image is nice, but it really lacks that feel of “contrast”. To help this we play with the
crush_shadows parameter:
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crush_shadows = 0.2 crush_shadows = 0.6

The crush_shadows parameter deepens the lower end of the intensity curve, and we get
some very nice contrast. However, since this image is already near the “too dark” end of the
spectrum, it tends to show an effect of darkening the entire image a bit.

This can be compensated by changing the exposure. Lets try a couple of different shutter
values, and prevent overexposure by further lowering our burn_highlights value:

shutter = 50, burn_highlights = 0.1 shutter = 30, burn_highlights = 0.1

The final image is pretty good. However, since so much highlight compression is going on, we
have lost a lot of color saturation by now. Lets try to finalize this by compensating:

saturation = 1.0 saturation = 1.4

Now we have some color back, the image is fairly well balanced. We still see something exists
outdoors. This is probably the best we can do that is still physically correct.

However, remember we were using the portal lights for the window? These have a non-physical
“transparency” mode. This mode is intended to solve exactly this issue. Even though the
result we have so far is “correct”, many people intuitively expect to see the outdoor scene
much more clearly. Since our eyes does such a magnificent job at compensating for the huge
dynamic range difference between the sunlit outdoors and the much darker indoors, we expect
our computers to magically do the same. Using the transparency feature of the portal lights,
this can be achieved visually, without actually changing the actual intensities of any light
going into the room:
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A transparency of 0.5 in the portal light

Now the objects outdoors are visible, while maintaining the contrast indoors. The light level
indoors hasn’t changed and still follows the real world values (unlike if we had put actual dark
glass into the window, which would have attenuated the incoming light as well).

Now this is a mid day scene. What if we change the time of day and put the sun lower on the
horizon? The scene will be much darker, and we can compensate by changing the exposure:

7 PM With shutter 1/2 second

Keeping the same settings (left) with the new sun angle makes a very dark image. On the
right, all we changed was the shutter time to 2 (half a second). This image has a bit of a
yellow cast due to the reddish sunlight, as well as the yellowish incandescent lighting. To
compensate, we set the white-point to a yellowish color:
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FEvening shot with adjusted white-point

The remaining issue is the overexposure around the lamp (although it would be there in a real
photograph), so we make the final image with burn_highlights set to a very low value, yet
keep it nonzero to maintain a little bit of “punch”:

burn_highlights = 0.01

In conclusion: Photography-related parameters help users with experience in photography
make good judgements on suitable values. The intuitive “look” parameters allow further
adjustment of the image for a visually pleasing result.
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3.2 Depth of Field / Bokeh

“Bokeh” is a Japanese term meaning “blur”, that is often used to refer to the perceived “look”
of out-of-focus regions in a photograph. The term “Depth of Field” (henceforth abbreviated
DOF) does in actuality not describe the blur itself, but the “depth” of the region that is in
focus. However, it is common parlance to talk about “DOF” while refering to the blur itself.

This shader is very similar to the physical lens_dof in the physics library, but with more
control on the actual appearance and quality of the blur.

declare shader "mia_lens_bokeh" (

boolean "on" default on,
scalar '"plane" default 100.0,
scalar "radius" default 1.0,
integer "samples" default 4,

4
scalar "bias" default 1
integer "blade_count" default O,
scalar "blade_angle" default O
boolean "use_bokeh" default off,
color texture "bokeh"

)

version 4

apply lens

scanline off
end declare

on enables the shader.

plane is the distance to the focal plane from the camera, i.e. a point at this distance from
the camera is completely in focus.

Focal point near camera Focal point far away

radius is the radius of confusion. This is an actual measurement in scene units, and for a
real-world camera this is approximately the radius of the iris, i.e. it depends on the cameras
f-stop. But it is a good rule of thumb to keep it on the order of a couple of centimeters in size
(expressed in the current scene units), otherwise the scene may come out unrealistic and be
perceived as a minature®.

5The diameter of the iris is the focal length of the lens (in scene units) divided by the f-number. Since this
parameter is a radius (not a diameter) it is half of that, i.e. (focal-length / fnumber) / 2.
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Small radius - deep DOF Large radius - shallow DOF

samples defines how many rays are shot. Fewer is faster but grainier, more is slower but
smoother:

Few samples Many samples

When bias is 1.0, the circle of confusion is sampled as a uniform disk. Lower values push
the sample probability towards the center, creating a “softer” looking DOF effect with a more
“misty” look. Higher values push the sample probability towards the edge, creating a “harder”
looking DOF where bright spots actually resolve as small circles.

bias = 0.5 bias = 2.0

The blade_count defines how many “edges” the “circle” of confusion has. A zero value
makes it a perfect circle. One can also set the angle with the blade_angle parameter, which
is expressed such that 0.0 is zero degrees and 1.0 is 360 degrees.

blade_count=6, angle=0.0, bias=2.0 blade_count=4, angle=0.1, bias=2.0
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The use_bokeh parameter enables the user of a specific bokeh map. When this parameter is
used, the parameters bias, blade_count and blade_angle have no effect. The map defines
the shape of the DOF filter kernel, so a filled white circle on a black background is equivalent
to the standard blur. Generally, one need more samples to accurately “resolve” a custom
bokeh map than the built-in bokeh shape, which has an optimal sampling distribution.

A cross shaped bokeh map Chromatic Aberation via colored map

With bias at 1.0, samples at 4, blade_count at 0 and use_bokeh off, this shader renders
an identical image to the old physical_lens_dof shader.






Chapter 4

General Utility Shaders

4.1 Round Corners

CG has a tendency to look “unrealistic” because edges of objects are geometrically sharp,
whereas all edges in the real world are slightly rounded, chamfered, worn or filleted in some
manner. This rounded edge tends to “catch the light” and create highlights that make edges
more visually appealing.

The mia_roundcorners shader can create an illusion of “rounded edges” at render time. This
feature is primarily intended to speed up modeling, where things like a table top need not be
created with actual filleted or chamfered edges.

No round corners Round corners

The shader perturbs the normal vector, and should be applied where bump maps are normally
used, e.g. in the bump parameter if the mia_material.

The function is not a displacement, it is merely a shading effect (like bump mapping) and is
best suited for straight edges and simple geometry, not advanced highly curved geometry.
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declare shader vector "mia_roundcorners" (
scalar "radius",
boolean "allow_different_materials",
shader "bump",
integer "bump_mode",
vector '"bump_vector",
)
version 3
apply texture
end declare

The radius parameter defines the radius of the rounding effect, in world space units.

When allow_different_materials is off, the rounding effect happens only against faces with
the same material. If it is on the rounding effect happens against any face of any material.

The bump parameter is a passthrough to any other bump shader that handles additional
bumping of the surface, for example mib_bump_map2 or similar. This parameter is only
used if bump_mode is 0.

To better support OEM integration, the new parameters bump_mode and bump_vector
was introduced.

bump_mode defines the coordinate space of the bump_vector, as well as that of the return
value of the shader itself (which is also a vector), and if it is interpreted as a “normal vector

perturbation” or a whole new “normal vector”".

The following values are legal:

e 0: compatible mode. The old bump parameter is used in place of bump_vector. The
return value is 0,0,0, and the shader actually perturbs the normal vector itself.

e 1: “add” mode in “internal” space
e 2: “add” mode in world space
: “add” mode in object space

3
e 4: “add” mode in camera space

e 5: “set” mode in “internal” space
e 6: “set” mode in world space

e 7: “set” mode in object space

e &: “set” mode in camera space

The “add” modes mean that the vector contains a normal perturbation, i.e. a modification
that is “added” to the current normal. The “set” mode means that the actual normal is
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replaced by the incoming vector, interpreted in the aforementioned coordinate space. Equally
for output, an “add” mode implies that the shader returns a perturbation vector intended to
be added to the current normal, and “set” mode implies that it returns a whole normal vector.
In neither case does the shader actually modify the current normal by itself.

4.2  Environment Blur

4.2.1 Shader Functionality and Parameters

The mia_envblur shader works by accepting some other environment shader as input, which
would usually be a shader that performs an environment lookup in an HDRI environment
map. When the render starts, it performs a one-time setup and rasterizes the result of this
environment shader in a special format into an internal pyramidal filter structure.

Then, when rendering proceeds, the shader can perform an extremely efficient blurring
operation in this environment map in way that looks very similar to shooting an extremely
large amount of glossy reflection rays into it; i.e. it yields a perfectly smooth result - quickly.

declare shader "mia_envblur" (
shader "environment",

scalar "blur" default 0.0,
boolean "mia_material_blur" default on,
integer "resolution" default 200

)

version 1

apply environment, texture
end declare

environment is the actual environment shader looked up by this shader. If this is not
specified, the global camera environment is used.

blur is the amount of blur (range 0.0 to 1.0) applied on the image. If this is 0.0, the internal
bitmap is bypassed and the environment shader is looked up directly, as if the mia_envblur
shader was not there.

The blur amount can be automatically calculated setting mia_material_blur to on. Any
reflective environment lookup performed by mia_material will cause the appropriate blur in
mia_envblur. Leave blur at 0.0 in this case. This feature is described in more detail on page
100.

resolution is the resolution of the internal pyramidal data structure used for the filtering.
The default value of 200 means that a map of 200 x 200 samples are taken and stored,
for subsequent filtering. This should be set high enough to resolve the smallest feature in
the environment map. 200 is generally enough for any still image - animations need higher
resolutions (1000).
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It is important to remember that mia_envblur does a one time rasterization of the
environment shader at start up time. This means that that shader must be constant across
the scene, and cannot be a complicated position-dependent blend of environment shaders. The
environment can stil change over time, since the rasterization step is performed anew each
frame.

4.2.2 Use Cases

The environment blur shader mia_envblur is intended to increase quality and performance of
renderings that are largely reflecting the mental ray environment (i.e. that do not primarily
reflect other objects).

The shader is primarily useful in product visualization renderings that are surrounded by an
HDRI environment map for reflections, and also for visual effects work where one wants to
help integrate CG objects in a real scene with the help of HDRI reflections, and want a smooth
yet fast lookup.

The shader is not as useful for interior architectural renderings, since in those (enclosed)

scenes, most reflection rays are bound to hit other objects; the purpose of this shader is to

help reflection rays that do not hit other objects, i.e. the largest benefit is in an “open” scene!.

Object reflecting an environment map

Here an example object is reflecting an environment map? with no glossiness (i.e. perfect
mirror reflection). This looks fine, because there is no quasi-random sampling performed.

Tt is also very useful combined with using refl_falloff_dist in mia_material.
2The “Gallileo’s tomb” probe from www.debevec.org, which contains many small bright areas that tend to
be troublesome in this context.
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But what is we want to make a glossy reflection? If one simply uses the glossy reflection of
mia_material one receives the following result:

Glossy reflection with 8 samples

It is obvious that the default 8 glossy reflection samples are nowhere near enough, especially
with an environment map with such high contrasts in it. Trying with 100 glossy samples (at
a large performance hit) the result is:

Glossy reflection with 100 samples
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This is better, but still nowhere near a “smooth” glossy reflection. The 100 samples made the
rendering an order of magnitude slower, and it is still not enough! What can we do?

What we want to is not look up the environment multiple times. Not 8 times, nor 100 times,
but once, except we want that lookup to already contain the desired blur!

This is accomplished by enabling the single_env_sample parameter of mia_materialand then
apply mia_envblur as our environment shader and our “original” environment map as the

environment parameter of mia_envblur.

Going back to our original 8 glossy samples, the following result can be rendered, very quickly:

Glossy reflections using mia_envblur

This looks much better, and renders much faster, but the level of blur is constant. A much more
advanced way is to let mia_envblur derive the blur to apply by enabling mia_material_blur.

Assume we have applied the following map to the refl_gloss parameter of the mia_material:



4.2 Environment Blur 101

Glossiness map

The resulting render, with the help of mia_envblur will be this:

Mapped glossiness via mia_-material_blur

Please note that mia_envblur shader only supports isotropic lookups, and will ignore any
anisotropy parameters of mia_material when using it like this.

Also, do not forget to use the single_env_sample feature; just blurring the environment map
is often not enough to combat the noise.
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Keep in mind that other objects will still reflect in the traditional manner with multiple
samples, and this feature only applies to environment lookups. Therefore it can be very
advantageous to use refl_falloff_dist to limit “actual” reflections to nearby objects only, and
let the environment take over for distant objects?:

No refi_falloff_dist refl_falloff_dist used
In the right image the legs of the horse only reflect very near to the floor, and conversely the
horse only reflects the very nearest parts of the floor - the rest is environment reflections. This
yields a faster result than actually tracing those reflections, and cuts down on the noise in the
image.

4.3 Light Surface

4.3.1 Shader Functionality and Parameters

The mia_light_surface shader is primarily intended to help creating physically plausible renders
of the “visible” portion of a light source - the actual tube in a fluorescent tube, the actual
bulb in a light bulb, etc. while still using a traditional CG “light” to create the illumination
of the scene (see the use cases described below).

3This is particularly true in a visual effects context.
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An example of using mia_light_surface

In the image above, actual illumination comes from a long thin rectangular area light, which
is set not to cause any specular highlights. The visible “glow” of the fluorescent tube is set
be visible in reflections (and hence become our much more accurate “highlight”) but still be
invisible to FG rays, so it will not be incorrectly picked up as additional light.

The mia_light_surface shader can either provide a color all by itself, or derive the color from
an existing (set of) light(s) in the scene.

The shader itself only returns a color and does not do any other shading per se. A tip is to
use it plugged into the additional _color of mia_material.

These are the parameters of the mia_light_surface shader:

declare shader "mia_light_surface" (

color "color" default 1 1 1,

scalar "intensity" default 1.0,

scalar "fg_contrib" default 0.0,

scalar "refl_contrib" default 0.0,

boolean "use_lights",

scalar "lights_multiplier" default 1.0,

vector "lights_eval_point" default 0.0 0.0 0.0,

array light "lights"

version 3
apply texture
end declare
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color is the overall color, and applies both to built in light or light derived from light sources.

intensity is the intensity of the “built in” light, i.e. the surface will appear to the camera to
have an intensity of color multiplied by intensity (assuming use_lights is off - see below).

fg_contrib is how much of the light that is visible to FG rays, and refl_contrib how much
that is visible to reflection rays.

When use_lights is on, the lights listed in the lights array are polled and their intensity
(multiplied by the lights_multiplier) is added to the output dictated by the intensity
parameter; i.e. if L is the output of all lights in the lights list, the final output color of
the shader is:

color x (L « lights_multiplier + intensity)

When lights_eval_point is 0,0,0 the intensity of the light is evaluated (with shadows disabled)
at the point in 3D space that is being shaded. Since this may vary in an undesirable way for
a light that has an IES profile, one can specify an explicit point at which the light color is
evaluated. This point is in the coordinate space of the light.

4.3.2 Use Cases

4.3.2.1 TIlumination in General

In the real world every light emitting object is visible, has an area, and emits light from that
area. When using FG, mental ray will treat any surface that adds light energy into the scene
as if it was a light source. However, to get the best possible quality out of this, one need very
high FG settings, with long render times.

Light sources in computer graphics can be either point sources or area lights, and the area
lights themselves may, or may not, be visible in the rendering. In most cases It is simply more
efficient to use actual light sources:

Emitting FG, Not emitting FG, And using a point light

The image above shows 3 patches that are all using the mia_light_surface above a checkered
plane. The leftmost patch has it’s fg_contrib set to 1.0 (and is hence illuminating the floor),
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the other two has it set to 0.0. But the rightmost patch has a point light hidden behind it.

At close distances (or with very large light sources, like the entire outdoor sky) FG can
illuminate objects just fine with very good quality. At long distances or with small sources,
using an explicit light source is much more efficient.

mia_light_surface gives separate control if the object should be “seen” by reflection rays or
FG rays (and how much) via the fg_contrib and refl_contrib parameters. This image uses
a slightly reflective checkered plane to illustrate this. No light sources are used behind these
patches:

Visibility to FG and reflections

The leftmost patch is visible both to FG (illuminates the plane) and reflection (reflects in the
floor). The center patch does not illuminate (fg_contrib is zero) and the rightmost does not
reflect (refl_contrib is zero).

4.3.2.2 Highlights vs. Reflections

In the real world, the visible light emitting objects are both visible to any camera
photographing the scene, as well as reflect (glossily) in other objects. In computer graphics,
light sources tend to be invisible to the camera, and their reflections are “cheated” with the
help of “highlights” by material shaders.

The mia_material supports a protocol for light sources to tell it if they should generate
highlights or not. This is implemented by most OEM applications light sources, look for
flags like “Affect Specular” or “Emit Specular” or similar on the lights.

Light hidden behind patch with various flags.
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There is a light hidden behind each of the patches in the image above. The leftmost is
emitting both specular- and diffuse light. The middle one is only emitting specular light,
and the rightmost is only emitting diffuse light. Furthermore, the rightmost patch has it’s
fg_contrib set to zero.

As we can see, the leftmost patch creates too much illumination, since we get illumination
both from the light and from the patch. The center patch generates the strange effect of a
small “highlight” (our light source is just a point light) inside the reflection of what we are
trying to sell as “the visible light”.

In this case this effect is distracting, so we want it disabled - like we have done on the light
on the right. That is the way to go; let the surface handle the reflection, not the illumination,
and let the light handle the illumination, not the reflection (i.e. no traditional “specular
highlight”).

An alternative, when using area lights, is to allow the area light to create the specular
highlights:

Area light specular highlights can also “work”

This illustrates the alternative. The leftmost patch again uses a point light with specular on.
This is what we do not want, since it looks strange. The other two patches use an area light.
The middle patch has the area lights specularity turned off and the patch has refl_contrib
set to 1.0, the right has the lights specular enabled, and a refl_contrib of zero.

As we can see, both variants on the right side “work”, so it is a matter of choice which method
is used for area lights.

However, the middle method tends to be preferred, because often one is using a geometrically
simple area light (sphere, rectangle, etc.) in place of an object that is actually geometrically
complex (a neon sign, for example). In those cases one definitely want to use the method in
which the object is reflected, and the light does not emit specular light:
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Complex geometry require real reflections

Both neon signs use a rectangular area light for their illumination, and both cast nice area
shadows (as witnessed by the small spheres). But the sign on the left has a blatantly
rectangular “reflection”, which does not make any sense. For this use, definitely use the method
on the right side, with the lights specularity off, and the surface’s refl_contrib nonzero.

4.3.2.3 Complex Light Distribution

In a real world luminaire, complex interactions between the bulb, the reflector, and various
occluders determine the final distribution of light flying off into the scene.

Naturally, one do not want to consider all those minute details just to make a rendering of a
desk lamp, and indeed, the problem comes pre-solved in the form of measured data (i.e. IES
or ELUMDAT files).

The mia_light_surface shader can get its intensity from a light. This saves the user the time
of keeping the intensity and color of the “visible surface” in sync with the intensity and color
of the light source. If the use_lights is on and some light is passed in the lights parameter,
this happens automatically.

This works fine for isotropic point lights and similar, but when using measured light data, one
can run into an issue:

Picking up intensity/color from the lights

The above scene contains three spheres. Lets assume they are the models of the light bulbs
of some desk lamp. They each contain a light that has an IES profile fitting that luminaire
applied.
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The leftmost sphere uses mia_light_surface with a manual setting, i.e. use_lights is off. The
user is responsible for making sure the intensity and color of the surface is “correct”, as well
as manually keeping it in sync with any animated intensity changes etc.

The center sphere uses use_lights, but we get a very strange effect from it; half our lightbulb
is dark. This is because the IES profile we chose only emits light in the down direction. Since
the light source is in the center of the sphere, only the lower half of the sphere will gather any
intensity values off the light!

Clearly this is not desirable; the IES profile is a compound effect applying to the entire
luminaire, and should not be “painted” onto the light bulb itself!

The solution is to use lights_eval_point as is done on the rightmost sphere. Here a point just
in front of the light is picked (in the lights own coordinate space) as the “evaluation point”.
Each point on the sphere (regardless of its location) will have the intensity “measured” at that
point in space.

This gives the sphere a color that automatically follows any intensity- and color-changes of
the light, yet is uniform across the surface of the sphere. This sphere will reflect correctly in

a more plausible way than a traditional “highlight” would.

In conclusion: The mia_light_surface shader allows...

e ..creating a surface as a “stand in” for an existing light, that “looks” bright, without
emitting additional light into the scene.

...controlling the amount of reflection and light actually introduced into the scene.

...driving the appearance of the surface from an existing light source.

...more physically correct “highlights” by replacing them with glossy reflections of actual
high-intensity objects.
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Another example using mia_light_surface






Chapter 5

Advanced Topics

This section is mainly of interest to OEM integrators of mental ray shaders into applications.

5.1 mia_material API

The mia_material exposes features that allows a much deeper integration into OEM
applications than ever before. Most notably it exports:

e an interface for obtaining sub-components of the rendered result (diffuse, reflections,
ete.).

e an interface for obtaining separate “diffuse” and “specular” lighting.

This is implemented as a C API for shader developers, utilizing shader states® for passing the
information in and out of the mia_material.

The keys and structs used are available in the public file mia material _api.h which is listed
in its entirety below.

5.1.1 Obtaining Sub-Components of the Rendering

The new mia_material_z already has multiple outputs. Hence, the interface described here is
an alternate method to get to the outputs.

To obtain independent results from the various shading components with this method one must
wrap the mia_material shader in some other shader that sets up the appropriate shader state,
calls mia_material and then reads the info stored in the shader state for further processing.

1See the book Programming mental ray for more details.
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Setting up the shader state structure is the responsibility of this wrapping shader. The
structure member struct_size must be initialized to the size of the struct (for version control)
and in_use initialized to miFALSE.

Two different structs are supported, the compatible mia material_api_storage and the new
mia material x_api_storage. Since these structs are different size, the shader detects which
is used by the struct_size value.

Then mia_material is called, for example with the help of mi_call_shader_x().

After the call the in_use parameter is inspected. If true, the rest of the structure contains
valid values.

A sample shader saving into separate mental ray frame buffers is listed on page 115.

5.1.2 Defining Characteristics of Light Sources

This interface allows light shaders to inform the mia_material if they are emitting specular or
diffuse light (or both, which is the default).

This shader state is set up by the mia_material and filled with defaults. Light shaders should
only test for the presence of the shader state. If it is missing, the light shader needs to take
no further action. But If the shader state ezists, the light shader can modify the structures
values, i.e. set the affects_diffuse or affects_specular scalars to suitable values.

See listing below for the meaning of each parameter:

5.2 mia material api.h File Listing

Here follows a complete listing of the interface header file:

[k kskok ok sk ok stk ok sk ok ko o sk ko sk ok sk stk sk ko sk sk ko sk sk ko sk sk ko sk sk ok sk ks sk ok sk kst sk ok sk kst sk ok sk ok sk ok ok ok
* Copyright 1986-2007 by mental images GmbH, Fasanenstr. 81, D-10623 Berlin,

* Germany. All rights reserved.
sk ok sk o ok ok sk o ok ok sk o ok ok sk o ok ok sk o ok ok sk o ok ok sk o ok sk sk o ok sk sk o sk sk o sk sk ok ok sk ok sk ok sk o sk ok sk o sk ok ok o ok ok ok o

Created: 06.04.12

Module: architectural

Purpose: the architecture & design material PUBLIC API
Exports:

mia_material_api_x*()

History:

¥ X X X K X X ¥ X ¥ *

Description:
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KKK oK ok ok ok o oK KoK ok ok ok ok ok KK oK ok ok ok o kKoK oK ok ok ok o ok KoK oK ok ok ok kKoK ok ok ok o kK KoK ok ok ok o ok KK oK ok ok ok ok kK K ok ok ok ok /

#define miA_MATERIAL_API_STORAGE "miXMST"

/*
Protocol for extracting arbitrary outputs from the mia_material:
1. Create a shader state named after the macro miA_MATERIAL_API_STORAGE
pointing to a struct mia_material_api_outputs
2. Set it’s struct_size to sizeof(mia_material_api_outputs);
3. Set in_use to miFALSE; No further initialization is needed.
4. Call the mia_material shader.
5. Upon return of mia_material, see if in_use is miTRUE.
If so, the structure in the shaderstate will be filled in with the
topmost shaders values.
*/

typedef struct {
/* Set before calling mia_material shader: */

miUint struct_size; /* Set to sizeof() struct */
miBoolean in_use; /* Set to miFALSE */
/* Return values after calling mia_material shader */
miScalar opacity; /* scalar opacity */

miColor indir_result; /* Indirect shading (FG and GI) */
miColor diff_result; /* Diffuse shading */
miColor spec_result; /* Specular/Highlights */

miColor tran_result; /* Translucency */

miColor refl_result; /* Reflections */

miColor refr_result; /* Refractions */

miColor add_result; /* "Additional color" */

miColor ao_result; /* AQ contribution only */

miColor diff_level; /* Actually used diffuse color/level */
miColor refl_level; /* Actually used reflection color/level */
miColor refr_level; /* Actually used refraction color/level */
miColor tran_level;  /* Actually used translucency color/level */
miRay_type type; /* Ray type for the stored data */

} mia_material_api_storage;
/* New: the return structure of mia_material_x, interface version 15 (or higher) */

typedef struct {
miColor result;

miColor diffuse_result;
miColor diffuse_raw;
miColor diffuse_level;

miColor  spec_result;
miColor spec_raw;
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miColor spec_level;
miColor refl_result;
miColor refl_raw;
miColor refl_level;
miColor refr_result;
miColor refr_raw;
miColor refr_level;
miColor tran_result;
miColor tran_raw;
miColor tran_level;
miColor indirect_result;
miColor indirect_raw;
miColor indirect_cooked;
miColor ao_raw;

miColor add_result;
miColor opacity_result;
miColor opacity_raw;
miScalar opacity;

/* Extra space in the struct for padding, never accessed */

miColor  spare[2];

} mia_material_x_return;

/* New mia_material_x_return struct */
typedef struct {

/* Set before calling mia_material
miUint struct_size; /* Set to
miBoolean in_use; /* Set to
miRay_type type; /* Ray type

/* Return values after calling mia
mia_material_x_return output;

¥ mia_material_x_api_storage;

shader: */

sizeof () struct */
miFALSE */

for the stored data */

material shader */

#define miA_MATERIAL_API_LIGHTDATA "miXMLD"

typedef struct {
/* All below set up by mia_material prior to calling each light */

miUint struct_size;
/* Read only’s: DO NOT

miScalar
miScalar

glossiness;
importance;

/* Modify as needed in

/* Set to sizeof() struct, for versioning */

change in light shader */

the light shader */

/* Light shader can make decisions based on glossiness */
/* Light shader can make decisions based on importance */
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/* How much does this light affect diffuse and specular? */
miScalar affect_diffuse; /* defaults to 1.0 */
miScalar affect_specular; /* defaults to 1.0 */

/* Is this the mr Sun? (should only be set by the mr sun) */
miBoolean is_mr_sun; /* defaults to miFALSE */
/* If this is a visible area light, but it still desires to
get a highlight, set force_specular to true */
miBoolean force_specular; /* defaults to miFALSE */
} mia_material_api_lightdata;

5.2.1 Sample Shader Source

Sample shader (code snippet) for saving the output of a mia_material into frame buffers:

#include <shader.h>

/* Parameter struct */
typedef struct [

miTag mtl; /* Tag of mia_material shader instance */
} mia_material_out_wrapper;

DLLEXPORT miBoolean mia_material_out_wrapper (
miColor *result,
miState *state,
mia_material_out_wrapper *param)

/* Tag of actual mia_material (sent in as parameter to wrapper shader) */
miTag mtl = *mi_eval_tag(&param->mtl);

/* Struct to store the data in */

mia_material_x_api_storage mtldata; /* NEW: Use _x variant */

/* We also need a pointer */

mia_material_x_api_storage *dp;

/* Need the key len */

static int klen = sizeof (miA_MATERIAL_API_STORAGE);

/* Initialize the struct */
mtldata.struct_size = sizeof (mtldata);
mtldata.in_use = miFALSE;

/* Create/set the shader state */
mi_shaderstate_set(state, miA_MATERIAL_API_STORAGE, &mtldata, sizeof(mtldata), 0);

/* Call shader */

mi_call_shader_x(result, miSHADER_MATERIAL, state, mtl, NULL);

/* Check if the data is there */
dp = mi_shaderstate_get(state, miA_MATERIAL_API_STORAGE, &klen);



116 5 Advanced Topics

/* So, was valid data written? */
if (dp && dp->in_use)

{
/* Diffuse to fb #10 */
mi_fb_put(state, 10, &dp->output.diffuse_result);
/* Reflection to fb #11 */
mi_fb_put(state, 11, &dp->output.refl_result);
/* Refraction to fb #12 */
mi_fb_put(state, 12, &dp->output.refr_result);
/* etc. *x/
}

return miTRUE;

Sample light shader (code snippet only) to set a light to “specular only”

static int klen = sizeof (miA_MATERIAL_API_LIGHTDATA);

mia_material_api_lightdata* 1d = (mia_material_api_lightdatax)
mi_shaderstate_get(state, miA_MATERIAL_API_LIGHTDATA, &klen);

/* Is there a shader state? */

if (1d)

{
/* Our light is specular-only (no diffuse) */
1d->affect_diffuse 0.0f;
ld->affect_specular = 1.0f;



