
A Guide to avenue.quark 6.0

©2003 Quark Technology Partnership and Quark, Inc. as to the content and arrangement
of this material. All rights reserved.

©1999–2003 Quark Technology Partnership and Quark, Inc. as to the technology.
All rights reserved. Patents pending.

Information in this document is subject to change without notice and does not represent
a commitment on the part of Quark Technology Partnership or its licensee, Quark, Inc.

Quark Products and materials are subject to the copyright and other intellectual property
protection of the United States and foreign countries. Unauthorized use or reproduction
without Quark’s written consent is prohibited.

Quark, QuarkXPress, QuarkXPress Passport, QuarkXTensions, avenue.quark, and
XTensions are trademarks of Quark, Inc. and all applicable affiliated companies, Reg.
U.S. Pat. & Tm. Off. and in many other countries. The Quark logo is a trademark
of Quark, Inc. and all applicable affiliated companies.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or
other countries.

All other trademarks are the properties of their respective owners.

QUARK IS NOT THE MANUFACTURER OF THIRD PARTY SOFTWARE OR OTHER
THIRD PARTY HARDWARE (HEREINAFTER “THIRD PARTY PRODUCTS”) AND
SUCH THIRD PARTY PRODUCTS HAVE NOT BEEN CREATED, REVIEWED, OR
TESTED BY QUARK, THE QUARK AFFILIATED COMPANIES OR THEIR LICEN-
SORS. (QUARK AFFILIATED COMPANIES SHALL MEAN ANY PERSON, BRANCH,
OR ENTITY CONTROLLING, CONTROLLED BY OR UNDER COMMON CONTROL
WITH QUARK OR ITS PARENT OR A MAJORITY OF THE QUARK SHAREHOLDERS,
WHETHER NOW EXISTING OR FORMED IN THE FUTURE, TOGETHER WITH
ANY PERSON, BRANCH, OR ENTITY WHICH MAY ACQUIRE SUCH STATUS IN
THE FUTURE.)

QUARK, THE QUARK AFFILIATED COMPANIES AND/OR THEIR LICENSORS
MAKE NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
QUARK PRODUCTS/SERVICES AND/OR THIRD PARTY PRODUCTS/SERVICES,
THEIR MERCHANTABILITY, OR THEIR FITNESS FOR A PARTICULAR PURPOSE.
QUARK, THE QUARK AFFILIATED COMPANIES AND THEIR LICENSORS DIS-
CLAIM ALL WARRANTIES RELATING TO THE QUARK PRODUCTS/SERVICES
AND ANY THIRD PARTY PRODUCTS/SERVICES. ALL OTHER WARRANTIES AND
CONDITIONS, WHETHER EXPRESS, IMPLIED OR COLLATERAL, AND WHETHER
OR NOT, MADE BY DISTRIBUTORS, RETAILERS, XTENSIONS DEVELOPERS OR
OTHER THIRD PARTIES ARE DISCLAIMED BY QUARK, THE QUARK AFFILIATED
COMPANIES AND THEIR LICENSORS, INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF NON-INFRINGEMENT, COMPATIBILITY, OR THAT THE
SOFTWARE IS ERROR-FREE OR THAT ERRORS CAN OR WILL BE CORRECTED.
THIRD PARTIES MAY PROVIDE LIMITED WARRANTIES AS TO THEIR OWN
PRODUCTS AND/OR SERVICES, AND USERS MUST LOOK TO SAID THIRD
PARTIES FOR SUCH WARRANTIES, IF ANY. SOME JURISDICTIONS, STATES OR
PROVINCES DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES, SO
THE ABOVE LIMITATION MAY NOT APPLY TO PARTICULAR USERS.

2

Legal Notices

IN NO EVENT SHALL QUARK, THE QUARK AFFILIATED COMPANIES, AND/OR
THEIR LICENSORS BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
CONSEQUENTIAL OR PUNITIVE DAMAGES, INCLUDING, BUT NOT LIMITED
TO, ANY LOST PROFITS, LOST TIME, LOST SAVINGS, LOST DATA, LOST FEES,
OR EXPENSES OF ANY KIND ARISING FROM INSTALLATION OR USE OF THE
QUARK PRODUCTS/SERVICES, IN ANY MATTER, HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY. IF, NOTWITHSTANDING THE FOREGOING,
QUARK, THE QUARK AFFILIATED COMPANIES AND/OR THEIR LICENSORS ARE
FOUND TO HAVE LIABILITY RELATING TO THE QUARK PRODUCTS/SERVICES
OR THIRD PARTY PRODUCTS/SERVICES, SUCH LIABILITY SHALL BE LIMITED
TO THE AMOUNT PAID BY THE USER TO QUARK FOR THE SOFTWARE/SERVICES
AT ISSUE (EXCLUDING THIRD PARTY PRODUCTS/SERVICES), IF ANY, OR THE
LOWEST AMOUNT UNDER APPLICABLE LAW, WHICHEVER IS LESS. THESE LIM-
ITATIONS WILL APPLY EVEN IF QUARK, THE QUARK AFFILIATED COMPANIES,
THEIR LICENSORS AND/OR THEIR AGENTS HAVE BEEN ADVISED OF SUCH
POSSIBLE DAMAGES. SOME JURISDICTIONS, STATES OR PROVINCES DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES, SO THIS LIMITATION OR EXCLUSION MAY NOT APPLY. ALL
OTHER LIMITATIONS PROVIDED UNDER APPLICABLE LAW, INCLUDING
STATUTES OF LIMITATION, SHALL CONTINUE TO APPLY.

IN THE EVENT ANY OF THESE PROVISIONS ARE OR BECOME UNENFORCEABLE
UNDER APPLICABLE LAW, SUCH PROVISION SHALL BE MODIFIED OR LIMITED
IN ITS EFFECT TO THE EXTENT NECESSARY TO CAUSE IT TO BE ENFORCEABLE

USE OF THE QUARK PRODUCTS IS SUBJECT TO THE TERMS OF THE END USER
LICENSE AGREEMENT OR OTHER APPLICABLE AGREEMENTS FOR SUCH PROD-
UCT/SERVICE. IN THE EVENT OF A CONFLICT BETWEEN SUCH AGREEMENTS
AND THESE PROVISIONS, THE RELEVANT AGREEMENTS SHALL CONTROL.

3

Legal Notices

A Guide to avenue.quark 6.0

Chapter 1: Installing and Customizing avenue.quark

Minimum System Requirements 6

Installation Instructions 6

Customizing avenue.quark 7

Chapter 2: Avenue.quark Basics

Introduction to XML 10

Understanding XML 12

Working with XML 14

Working with DTDs 19

Industry-Standard DTDs 42

Chapter 3: XML W orkspace Palette

XML Workspace Palette 45

Chapter 4: Menus and Dialog Boxes

Preference Settings 57

Edit Menu 64

Utilities Menu 71

Choose Rule/Position Dialog Box 71

Chapter 5: Tagging Rule Sets

Understanding Rule-Based Tagging 75

Working with Tagging Rule Sets 78

Chapter 6: Tagging Content

Creating, Opening, and Saving XML Documents 82

Working with XML Templates 87

Working with XML Document Content 90

Tagging Text 93

Tagging Pictures 96

Manually Entering New Content 96

4

Table of Contents

Previewing Tagged Text 97

Appendices

Appendix A: XML Quick Reference 98

Appendix B: DTD Quick Reference 101

Appendix C: Understanding Encodings 105

Appendix D: Sample avenue.quark Scenario 107

5

Table of Contents

Chapter 1: Installing and Customizing

avenue.quark

Once you install avenue.quark™ software, you can customize avenue.quark for
your workflow. You can control the color of tagged and untagged content
(Utilities & Show Tagged Content), set the color of the XML markers that
display when you choose View & Show Invisibles, turn dynamic content
updating on and off, and control certain elements of tagging.

MINIMUM SYSTEM REQUIREMENTS

• QuarkXPress™ or QuarkXPress Passport™ 6.0 software or later

INSTALLATION INSTRUCTIONS

Avenue.quark software is automatically installed by the QuarkXPress or
QuarkXPress Passport Installer. If you need to reinstall the QuarkXTensions™

software, avenue.quark, follow these steps:

FOR MAC OS

1 Quit QuarkXPress or QuarkXPress Passport.

2 On the QuarkXPress CD-ROM, locate the “avenue.quark” file.

3 Copy the “avenue.quark” file into the “XTension” folder within your
QuarkXPress or QuarkXPress Passport application folder.

4 Launch QuarkXPress or QuarkXPress Passport to access the features
of avenue.quark.

Chapter 1: Installing and Customizing avenue.quark

6

Minimum System Requirements

F O R W I N D O W S

1 Exit QuarkXPress or QuarkXPress Passport.

2 On the QuarkXPress CD-ROM, locate the “avenue.quark.xnt” file.

3 Copy the “avenue.quark.xnt” file into the “XTension” folder within your
QuarkXPress or QuarkXPress Passport application folder.

4 Launch QuarkXPress or QuarkXPress Passport to access the features
of avenue.quark.

C U S TOMIZING AVENUE.QUARK

Avenue.quark uses several default settings to control how tagged content displays,
specify the color of marker text, and turn dynamic content updating on and off.
These settings are saved with the application and are never saved with projects. To
modify avenue.quark preferences:

1 Choose QuarkXPress & Preferences & avenue.quark on Mac OS or Edit &
Preferences & avenue.quark on Windows to display the avenue.quark pane.

Use the avenue.quark pane to specify how tagged text displays in a project.

2 To specify the color that is used to display tagged content when you choose
Utilities & Show Tagged Content, click the Tagged Text button and then
choose a color in the resulting dialog box.

Chapter 1: Installing and Customizing avenue.quark

Installation Instructions

3 To specify the color that is used to display untagged content when you choose
Utilities & Show Tagged Content, click the Untagged Text button and then
choose a color in the resulting dialog box.

4 Use the Tagging Rule/Position Options to control certain elements of tagging:

• The Always insert repeating elements at the end of the current branch
check box controls the placement of new repeating elements (elements marked
with a + or * in the DTD). When this box is checked, avenue.quark always puts
new repeating elements at the end of the active branch. When this check box
is unchecked, avenue.quark displays the Choose Rule/Position dialog box
and lets you manually choose the position of a new repeating element.

• The Always use first available path for elements with multiple insertion
paths check box controls the placement of new elements that could be inserted
in a number of places according to the DTD. For example, say a tagging rule
calls for the creation of a <paragraph> element. If the DTD states that a new
<paragraph> element may be created either at the end of the current branch
or as a child of a new <sidebar> element, which kind of <paragraph> element
should avenue.quark generate? If this check box is checked, avenue.quark
creates the first <paragraph> element it finds in the DTD tree (a <paragraph>
element at the root level of the current branch). If this check box is unchecked,
avenue.quark displays the Choose Rule/Position dialog box.

• The Always use the first applicable tagging rule check box applies to tag-
ging rule conflicts. When this box is checked, avenue.quark always chooses
the first of a series of applicable rules in tagging rule conflicts. When this box
is unchecked, avenue.quark displays the Choose Rule/Position dialog box
so you can either manually choose the element type to be applied to the
selected text or click Choose Automatically.

5 To specify that the content of elements in active XML documents should be
continuously updated to reflect the content of the QuarkXPress items they’re
linked to, check Enable Dynamic Content Update. You might want to uncheck
this button if QuarkXPress seems to be running very slowly when editing
large XML documents; you can manually update the content when this
box is unchecked by clicking the Synchronize Content button in the
XML Workspace palette.

The dynamic content updating feature works for elements, but not for attributes.

6 To specify the color of the markers that display when you choose View &

Show Invisibles, display the Preferences dialog box Placeholders pane
(QuarkXPress & Preferences on Mac OS or Edit & Preferences on Windows),
click the Color button in the Placeholder Descriptor area, and then
choose a color in the resulting dialog box. Enter or choose a shade percent-
age in the Shade field. Click OK, then click OK again to close the Prefer-
ences dialog box.

Chapter 1: Installing and Customizing avenue.quark

Customizing avenue.quark

Use the Placeholder Descriptor area of the Preferences dialog box Placeholders pane to

specify the color of text markers.

7 Click OK.

Chapter 1: Installing and Customizing avenue.quark

Customizing avenue.quark

Chapter 2: Avenue.quark Basics

Many people want to use the Web to publish information they create in QuarkXPress

format. A very efficient way is to separate the content of QuarkXPress projects from

the projects themselves, and store that content in a structured format such as XML.

Then you can re-use the content not only on the Web, but in other formats as well —

print, CD-ROM, you name it. Avenue.quark software makes it easy for you to extract

your QuarkXPress content and store it in XML format.

INTRODUCTION TO XML

Avenue.quark lets you extract the content of QuarkXPress projects and store that
content in XML format. You can then easily re-use the content in a variety of ways,
including on the Web. This section briefly explains the process and definitions;
more detailed descriptions follow in subsequent sections.

W H AT IS CONTENT?

Content is the information that makes your projects valuable. For example,
the content of a magazine may include articles, photographs, interviews,
and diagrams.

Content can also be defined by what it is not. For example, headers, footers,
and “Continued on page x” notes are generally not considered to be part of a
magazine’s content. Rather, they’re part of the magazine’s presentation —
aspects of the magazine that are desirable only when the magazine is being
presented in printed format. Presentation may change depending on the
medium information is published in, but content generally stays the same.

Avenue.quark lets you separate content from presentation by extracting that
content from your QuarkXPress projects and storing it in XML format.
Then you can re-use that content with different presentations — in print,
on the Web, on CD-ROM, and so forth.

W H AT IS XML?

XML stands for Extensible Markup Language. XML is a way for you to specify the
structure of content and label the pieces of that content in a meaningful way.

LABELING CONTENT

Why do we need to label content? Because although we can pick up a magazine
and know that a particular line of text is a headline, such distinctions aren’t so

Chapter 2: Avenue.quark Basics

10

Introduction to XML

easy for a computer. XML lets you label (“tag”) information in a way that
computers can understand; once a computer understands that a particular line
of text is a headline, it can automatically format that line as a headline.

To label a piece of content in XML, you insert an opening XML tag before
the content and a closing XML tag after the content, like this:

<headline>Internet Grows by 400%</headline>

As you can see, an opening tag consists of an element name between a < and
a >. A closing tag is the same, with a /after the <. Here, we’ve tagged the text
“Internet Grows by 400%” as a headline by putting it between opening and
closing <headline> tags.

IDENTIFYING STRUCTURE

We know that a news story generally consists of a headline, a byline, body text,
and some photos or diagrams with captions. However, computers don’t know
such things until you tell them.

XML lets you describe the structure of your layouts with DTDs (document type
definitions). A DTD specifies that the information in a layout will use a particu-
lar set of tags and follow a particular set of structural rules. For example, a DTD
for a news story might specify that:

• Each story must have exactly one <headline>.

• Each story may or may not have a <byline>.

• Each story must have at least one <paragraph>.

• Each story may have zero or more <illustration> elements.

• Each illustration must be immediately followed by exactly one <caption>.

By consistently adhering to the rules of a DTD, an organization can ensure that
its documents are structured predictably and consistently. This makes it much
easier for organizations to move content from one medium to another —
for example, from print to the Web, or vice versa.

Avenue.quark requires the use of DTDs. For information on creating and
adapting DTDs, see “Working With DTDs” and “Industry-Standard DTDs”
in this chapter.

A NEUTRAL FORMAT

XML is a “neutral” format in that it contains no information about formatting.
This means it can be used with a wide variety of applications, which can
apply different kinds of formatting when the content is presented through
different kinds of media. For a more detailed discussion of XML, see
“Understanding XML.”

Chapter 2: Avenue.quark Basics

11

Introduction to XML

W H AT CAN I DO WITH CONTENT S TORED IN XML F O R M AT?

Once you’ve extracted the content from a QuarkXPress layout, you can use that
content in a variety of ways. For example, you can dynamically translate
XML-tagged content into HTML format and serve it on the Web. This method of
converting QuarkXPress content to HTML is superior to simple HTML export
because it lets you easily format, reformat, and reorganize the content.

U N D E R S TANDING XML

Now that you have a general idea of what avenue.quark is and how it works, let’s
take a look at the details, beginning with a look at XML.

XML (Extensible Markup Language) is a way of specifying the structure of docu-
ments and labeling specific pieces of content with tags. XML’s structural controls
let you make sure that all the necessary parts of that document are present and
occur in the proper order. Labeling content makes it easy for other applications to
use or display that content.

Before we consider how XML accomplishes all of this, let’s talk about why
it’s necessary.

THE PROBLEMS XML S O LV E S

XML was derived from an older and more complicated markup language,
SGML (Standard Generalized Markup Language). XML was created to solve a
variety of related problems, some of which were originally solved by SGML,
others of which are unique.

ASSIGNING STRUCTURE AND LABELS TO INFORMATION

XML is sometimes referred to as a meta-language because it lets you define
customized markup languages for specific uses. You do this by creating a DTD
(document type definition). A DTD specifies what kind of information may go
into a document, how the parts of the document should be tagged
(labeled), the order in which the parts should occur, and how many of each
part are allowed. A document is considered valid according to a given DTD
only if it follows that DTD’s rules.

DTDs let you enforce the structure of document. If you have a document’s DTD,
you know what kind of information to expect when you display that
document. DTDs also make the information in XML documents easy for
computers to process; if a computer can understand a DTD, it can under-
stand the information in any XML document that adheres to that DTD. For
example, using a document’s DTD, a computer program might let you search
through every occurrence of a particular type of information (such as company
name) in that document, or produce an HTML page that lists all occurrences of
that type of information (for example, a list of company names).

Chapter 2: Avenue.quark Basics

12

Introduction to XML

Specialized DTDs have already been developed for chemistry, mathematics,
technical documentation, and even fictional works. Potential applications
include workflow control, software specification, and just about any other
field of endeavor that involves the exchange of structured information.

Unlike SGML, XML lets you create well-formed documents — that is, documents
that follow the rules of XML but do not follow a particular DTD. However,
it’s difficult to maintain consistency among documents if you do not have
a standard, so avenue.quark requires you to use DTDs.

MAKING SENSE OF HTML

HTML has proved to be a powerful and versatile format for displaying informa-
tion on the World Wide Web. However, it has two major shortcomings: it
describes only the formatting of data, not its meaning, and you cannot
create new HTML tags.

XML solves both of these problems. If you use XML to label data in an XML
document, you can then base the HTML formatting on those labels. For exam-
ple, say you have an XML document that includes a list of companies and some
information about each of those companies. To transform this list into an HTML
Web page in which every company name is bold, you can use an XML-to-HTML
converter, and instruct the converter to format every line that’s tagged as a
<companyName> as bold text. This means you no longer have to go
through and format each company name and address manually. This can
save Web site creators enormous amounts of time.

INFORMATION EXCHANGE

Because computer applications have been developed by many people and
organizations for many different uses, they store information in many dif-
ferent formats. For example, two companies may store their customer
information in two completely different formats, even though the cus-
tomer information stored by the companies (name, address, phone number,
and so forth) is basically identical.

XML solves this kind of problem by providing a standardized, nonproprietary
format for the transfer of information between applications. XML was devel-
oped, refined, and approved by a group of professionals from different industries
working together as part of the World Wide Web Consortium (the W3C). The
specification is available to anyone who wants to use it (see www.w3.org), and
many organizations and industries already do.

If two companies use software that can convert their records to XML with an
agreed-upon DTD, they can exchange those records with no risk of data loss
due to incompatible formats. For more information on DTDs and information
exchange, see “Industry-Standard DTDs” in this chapter.

For a more in-depth discussion of XML, see “Working with XML” in this chapter.

Chapter 2: Avenue.quark Basics

13

Understanding XML

For a detailed explanation of the XML 1.0 specification, see XML: The Annotated
Specification, by Bob DuCharme or XML: A Primer, by Simon St. Laurent.

WORKING WITH XML

An XML document contains structured data that has been broken down into elements,
each of which is described with XML tags.

X M L ELEMENTS AND XML TA G S

An XML element contains a piece of information, such as a company name, a
headline, or a part number. You create an element by putting a piece of informa-
tion between two XML tags: an opening tag containing the element’s name
between a less-than (<) symbol and a greater-than symbol (>), and a closing tag
that is the same except for the inclusion of a slash (/) before the element name.
For example, a tagged “name” element might look like this:

<name>Gertrude</name>

It’s important to understand the difference between an XML element and
an XML tag. An XML tag is simply the label that is attached to a piece of
information; an XML element includes both the piece of information and
the tags that surround it.

XML tags let you describe and add structure to the data they surround.
For instance, the following introductory paragraph is tagged with an
<introduction> tag:

<introduction>

Frank Lloyd Wright was one of America’s finest and most celebrated architects.

Here is the story of his life.

</introduction>

Within the <introduction> element, you can tag other sub-elements to add
more structure to your document:

<introduction>

<name>Frank Lloyd Wright</name> was one of America s finest and most

celebrated <job>architects</job>. Here is the story of his life.

</introduction>

Chapter 2: Avenue.quark Basics

14

Understanding XML

Syntax is important for XML tags. Unlike HTML tags, they are case-sensitive;
a <Name> tag is different from a <name> tag, which is different from a <NAME>
tag. Each XML tag name must begin with a letter or an underscore (_); subse-
quent characters in the name may be letters, underscores, numbers,
hyphens, and periods, but not spaces or tabs. For example, the XML tag
name <_.dir> is a correctly formed tag name, but the names <_ dir> and
<.dir> are not. The <_ dir> tag name is incorrect because it contains white
space (a tab or space) after the underscore. The <.dir> tag name is incorrect
because it begins with a period instead of an underscore or letter.

It’s useful to know the difference between “elements” and “element types.”
An element type can be thought of as a specific tag name that can be applied
to data; an element is a piece of data and the tags that surround it. For exam-
ple, a document containing a list of names and addresses might have only
two element types, <name> and <address>, but hundreds of elements that
use those tags.

Avenue.quark supports XML namespaces. Element names that include name-
space prefixes (such as <HTML:H1>) are handled in the same way as element
names without prefixes.

X M L ATTRIBUTES

Let’s say you’re working with elements tagged as <textbook>, and you want to
be able to specify additional information about each <textbook> element you
create. For example, say you want to designate a specific <textbook> element
not just as a textbook, but with the corresponding course number and author
name and whether the book is required or optional.

There are several ways you could do this. One way involves creating additional
element types, like this:

<textbook>

<course> ENGL 3500 </course>

<category> Required </category>

<author> William Styron </author>

Lie Down in Darkness

</textbook>

Another, perhaps more streamlined, way to do this is by using an XML feature
called attributes. Attributes are designed to provide information about an
element. They are included within an element’s start tag, so there is never
any doubt about which element they are related to.

An attribute consists of an attribute name, followed by an equals sign, followed
by an attribute value between quotation marks. For example, the following

Chapter 2: Avenue.quark Basics

15

W orking with XML

single element uses three attributes to provide the same information as the
example above:

<textbook course="ENGL 3500" category="required" author="William Styron" > Lie

Down in Darkness </textbook>

Attributes are useful for several reasons. For example, they make it easy to search
a document and generate a list of all the <textbook> elements that contain the
value “required” in the category attribute. They can also be useful in conjunc-
tion with empty elements; see the next section for details.

E M P T Y E L E M E N T S

Empty elements include a start tag and an end tag, and do not surround any
data, like this:

<IDnumber></IDnumber>

Since empty elements have no content between their tags, the starting and
closing tags are often combined, like this:

<IDnumber/>

You can use attributes along with empty elements to refer to URLs or externally-
stored files. For example, the following empty element could be used (with an
appropriate XML interpreter) to display a picture of an author:

<authorPicture URL="www.quark.com/picture"/>

Adding an attribute named “URL” to an element does not guarantee that the
URL will be accessed when the XML file is processed. The application that
processes the file must know what to do with the URL attribute.

C O M M E N T S

Just as in HTML, you can include comments in an XML file. Comments are
bracketed by <!-- and -->, and are essentially ignored by XML processors.
So, for example, to insert a comment about the status of an <address> element,
you could do the following:

<address>

<!-- Waiting to get this address from Accounting. -->

</address>

In this manual, comments always display in red for easy identification.

PROCESSING INSTRUCTIONS

In HTML, comments are often used to contain special commands for browsers
and other HTML processors. In an effort to restrict XML comments to being

Chapter 2: Avenue.quark Basics

16

W orking with XML

just that — comments — the authors of the XML specification have included
a method for inserting customized commands in XML files and DTDs. Such
customized commands, called processing instructions (or “PIs”), are enclosed
between a <? and a ?>. They begin with an application name, followed by a
space and any information that might be of interest to the named application.
Processing instructions can be used anywhere that comments can display.

When adding comments and processing instructions using the XML Workspace
palette, remember that avenue.quark adds the opening and closing tags auto-
matically. Adding these tags manually can lead to problems.

According to the XML 1.0 specification, it is illegal to include a closing com-
ment tag (-->) in a comment. It is also illegal to include a closing processing
instruction tag (?>) in a processing instruction. If you do either of these things,
avenue.quark will not be able to reopen the resulting XML document.

X M L D E C L A R ATION

Each XML document should begin with an XML declaration. Like a processing
instruction, an XML declaration is enclosed between a <? and a ?>. Here’s an
example of an XML declaration:

<?xml version="1.0" standalone="yes"?>

The version attribute declares that this document adheres to the rules of
XML 1.0. The standalone attribute indicates that all markup declarations
needed to process this XML document are included in the document.

ENTITY R E F E R E N C E S

An entity reference is a word that serves as shorthand for a character, string,
or file. For example, by using the < entity reference to represent a less than
character (<) in the content of an XML document, you can avoid confusing the
XML parser (which would otherwise erroneously read the “<” character as the
beginning of a tag). For more information on entity references, see “Entity
References” in the “Working with DTDs” section of this chapter.

WELL-FORMED XML

For an XML document to be well-formed, it should begin with an XML
declaration and have a root element that contains all of its other elements
(<article> in the example below). Well-formed XML also requires every element
in the document to have a corresponding end tag. The following is an example
of a well-formed XML document:

<?xml version="1.0" standalone="yes"?>

<article>

Chapter 2: Avenue.quark Basics

17

W orking with XML

<newsflash>

<title>Forney Museum to Close</title>

<author>Linda Spano</author>

<content>

The Forney Transportation Museum closes its doors next week.

</content>

</newsflash>

</article>

VALID XML

A well-formed XML document can be limited in its usefulness unless it is
also valid. An XML document is considered to be valid when it adheres to
the specifications of a specific DTD. For more information about DTDs and
validating XML documents, see “Working with DTDs” in this chapter.

X M L P R O C E S S O R S

An XML processor is a program that reads an XML file and does something
with it. There are various kinds of XML processors. An XML processor might
convert an XML file into an HTML Web page, a PDF file, or a PostScript
file. It might read the XML file’s content out loud, or convert the content
to Braille. An XML processor could even be used to copy structured XML
content into a database.

X M L PA R S E R S

An XML parser recognizes the rules of XML and checks to see if an XML
document is well-formed. However, an XML parser does not necessarily check
to see if an XML document is valid according to its DTD; this requires a
validating XML parser (see below).

VALIDATING XML PA R S E R S

Validating XML parsers compare an XML document to a DTD and verify
whether the document conforms to the DTD’s rules. A good validating parser
will also provide constructive feedback about any problems it finds in the XML
file. For more information about XML parsers, see “Working with DTDs” in
this chapter.

For a quick reference to XML features and conventions, see Appendix A,
“XML Quick Reference,” in Chapter 7, “Appendices.”

WORKING WITH DTDS

A DTD (document type definition) specifies which elements an XML file may contain
and how those elements must be structured. XML documents don’t necessarily have to
have a corresponding DTD; as long as an XML file follows basic XML syntax, it’s

Chapter 2: Avenue.quark Basics

18

W orking with XML

considered to be well-formed and can be read by an XML-savvy application. However,
an XML file can only be considered valid if it adheres to a particular DTD.

DTDs are important because they provide a reliable, well-documented structure for
XML documents. Without DTDs, two organizations that work together might decide to
structure and tag their XML documents in entirely different ways; thus, their data stores
would remain incompatible even after they both have made the transition to XML.
However, if both organizations have the same DTD — perhaps a DTD they developed
together, or a DTD that has become standard in their industry — they can easily and
predictably exchange information.

EXTERNAL AND INTERNAL D T D S

There are two kinds of DTDs: external DTDs and internal DTDs. Technically, a
DTD consists of the list of markup declarations (element declarations, attribute
declarations, entities, notations, processing instructions, and comments) that is
referenced by a DOCTYPE declaration. What this document refers to as “exter-
nal DTDs” and “internal DTDs” are not technically complete DTDs; however, it
is convenient and fairly common to refer to them as such.

EXTERNAL D T D S

An external DTD (or external subset) is a file containing a list of markup
declarations. External DTDs are easy to share between XML documents and
organizations. To use an external DTD in an XML file, refer to it at the
beginning of the XML file, like this:

<?xml version="1.0" standalone="no"?>

<!-- The following line specifies a root element (<myDocument>) and points to the

URL of an external DTD file named

"mydocument.dtd" -->

<!DOCTYPE myDocument SYSTEM "http://www.quark.com/mydocument.dtd">

<!-- Document begins here -->

<myDocument>

When laws are outlawed, only outlaws will follow the rules.

</myDocument>

INTERNAL D T D S

An internal DTD (or internal subset) is actually included in the XML file it
describes. To use an internal DTD in an XML file, you simply add it to the
beginning of the XML file, like this:

<?xml version="1.0" standalone="yes"?>

<!-- The following line specifies a root element (<myDocument>) and signifies the

beginning of the DTD -->

<!DOCTYPE myDocument [

Chapter 2: Avenue.quark Basics

19

W orking with DTDs

<!-- Internal DTD begins here -->

<!ELEMENT myDocument ANY>

<!-- End of DTD -->

]>

<!-- Document begins here -->

<myDocument>

When laws are outlawed, only outlaws will follow the rules.

</myDocument>

If a document uses an external DTD (or any other sort of external entity), the
standalone attribute in the first line must be set to no. For more information,
see “Using entity references” in this section.

COMBINING INTERNAL AND EXTERNAL D T D S

In a given XML document, you can specify an external DTD, then add to or
override that DTD with an internal DTD. Here’s how such an XML document
might look.

<?xml version="1.0" standalone="no"?>

<!-- The following line specifies a root element (<myDocument>), points to the

URL of an external DTD file named "mydocument.dtd", and then signifies the

beginning of the internal DTD -->

<!DOCTYPE myDocument SYSTEM "http://www.quark.com/mydocument.dtd" [

<!-- Internal DTD goes here; it may add new element types in addition to the

element types defined in the external DTD -->

<!ELEMENT myLocalDTDelement ANY>

<!-- End of DTD -->

]>

<!-- Document begins here -->

<myDocument>

<myLocalDTDelement>

When laws are outlawed, only outlaws will follow the rules.

</myLocalDTDelement>

</myDocument>

PLANNING A D T D

You probably don’t want to just sit down and start writing a DTD; it requires
considerable planning if you want to do it right. Before you begin the process of
creating your own DTD, you may want to consider using an industry-standard

Chapter 2: Avenue.quark Basics

20

W orking with DTDs

DTD. For more information on this option, see “Industry-Standard DTDs” in
this chapter.

A good way to begin is to figure out what exactly you want your DTD to do.
First, decide which elements you want to use. If you want to use elements such
as <address>, think about whether you want to subdivide those elements into
subelements such as <streetAddress>, <unitNumber>, <city>, <state>, and
<ZIPcode>. (Give such subdivisions serious consideration if there’s any chance
that you may one day transfer the contents of your XML files into a database.)

So much for the easy part. Next, you need to figure out the relationships
between all these elements. A DTD can specify which elements are allowed,
what order they must be in, and which (and how many) sub-elements they
may contain. It can specify which other elements can contain a given element,
and it can specify whether a given element must contain data or not.

Elliotte Rusty Harold, in XML: Extensible Markup Language, recommends using
a table to help you figure out the relationships between the various elements
in your DTD. The table should have the following columns (the data in the
columns is provided as an example only):

E L E M E N T M U S T BE

N A M E M U S T C O N TAIN M AY C O N TAIN C O N TAINED BY

<course> <title>,<author>, <publisher> <FallBookList>

<category> <new price>,

<used price>

<title> <course>

Each row in the table should represent an element that you want to use
in your DTD.

C R E ATING AN INTERNAL D T D

To better understand how a DTD is constructed, you can create a very simple
internal DTD. Even if this DTD does not serve your publishing needs, the act of
creating one will reinforce the concepts in the following sections. This internal
DTD lists all books for fall semester courses. To create this DTD:

1 Open a text editor such as SimpleText (Mac OS) or WordPad (Windows).

2 In the new text document, enter the following:

<!ELEMENT FallBookList (course, title+, author+, category, newprice, usedprice)>

This establishes the root element of the DTD. Think of the root element as the
main element; all other elements will exist within the root element. This line
also states that elements contained in the root element can be of any type.

3 Now that you have the root element defined, you’ll need to define further
elements. Enter the following:

Chapter 2: Avenue.quark Basics

21

W orking with DTDs

<!ELEMENT course (#PCDATA)>

This defines the element course, and by not adding a symbol after the element
name, you are indicating that there can be only one instance of this element
(per book).

4 Now you can add the title and author by entering the following:

<!ELEMENT title+ (#PCDATA)>

<!ELEMENT author+ (#PCDATA)>

Although a book only has one title, one course may have several books, and
one book may have several authors or editors, so adding the + symbol after
title and author allows a course to contain one or more titles, and for a book
to have one or more authors.

5 At this point, you can use an element such as category to indicate whether
the book is required or optional. Enter the following:

<!ELEMENT category (#PCDATA)

Since the book can only be required or optional, you only need one instance
of this element. Not adding a symbol after the element name indicates that
this element can only occur once per book.

6 Now you’re ready to add the prices. A book only has one price, but you may
want to create two elements, one for the price of a new book and one for the
price of a used book. Enter the following:

<!ELEMENT newprice (#PCDATA)

<!ELEMENT usedprice (#PCDATA)

7 Save the text document as a plain text (ASCII) file, and name it “BookList.dtd.”
You have just created a DTD that can be used as an internal DTD in conjunction
with avenue.quark.

This exercise introduced you to the basics of creating a DTD; details and
advanced concepts are explained below.

U N D E R S TANDING A D T D

Like an XML file, a DTD consists of plain text. An XML file may use no DTD,
an external DTD, an internal DTD, or both an external and an internal DTD.

Regardless of which type of DTD an XML document uses, it must refer to or
include that DTD in its prologue (opening section), just after the XML declara-
tion and before the body of the XML document. The DTD section begins with
<!DOCTYPE rootname [and ends with]>. Here, for example, is a complete XML
document containing a complete DTD (in bold type):

<?xml version="1.0" standalone="yes"?>

<!-- DTD begins here -->

Chapter 2: Avenue.quark Basics

22

W orking with DTDs

<!DOCTYPE message [

<!ELEMENT message ANY>

]>

<!-- Document begins here -->

<message>

When laws are outlawed, only outlaws will follow the rules.

</message>

Let’s break that down a bit:

• The root name (the word after <!DOCTYPE) specifies the root element type of
the XML file.

• The square brackets indicate and enclose the internal DTD.

• <!ELEMENT message ANY> defines an element type named “message.” !ELE-
MENT means “The following is an element type declaration.” Next comes the
name of the element (message) and information about what can be con-
tained by this element (in this case, ANY, meaning both text and additional
elements).

As you can see, each element type definition specifies both the element’s name
and the kind of data that element may contain. If you wanted to change the
element type definition for <message> so that it could contain text and only
text (that is, no other elements), you could do so by changing the ANY key-
word to (#PCDATA), like this:

<?xml version="1.0" standalone="yes"?>

<!-- DTD begins here -->

<!DOCTYPE message [

<!ELEMENT message (#PCDATA)>

]>

<!-- Document begins here -->

<message>

When laws are outlawed, only outlaws will follow the rules.

</message>

However, you probably wouldn’t want to do this, since that would mean
your document’s root element could contain only parsed character data;
you wouldn’t be able to add more elements to subdivide the information.

“PCDATA” stands for “parsed character data”: that is, text that may include
entity references, comments, and processing instructions.

Let’s take a look at a more complex DTD. The following DTD defines a structure
for a directory of branch offices:

Chapter 2: Avenue.quark Basics

23

W orking with DTDs

<!-- Root element is <branchOfficeDirectory> -->

<!ELEMENT branchOfficeDirectory ANY>

<!ELEMENT streetAddress (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT postalCode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT eMail (#PCDATA)>

Note that we’ve inserted a comment indicating that <branchOfficeDirectory> is
the root element of the DTD. We did this because a DTD can’t explicitly
designate a root element; specifying the root element is technically the job of
the !DOCTYPE line in an XML document. But it’s a good idea to specify
root elements with a comment so users of the DTD can see what they are.

Some DTDs may contain more than one element that can serve as a root
element. For example, you can write a DTD that contains definitions for
both white paper documents and FAQ documents, then use that DTD to
create both kinds of document simply by specifying <whitePaper> or <FAQ>
as the root element of each XML file.

The remaining lines in the DTD declare elements for each office’s street address,
city, state, postal code, country, phone number, fax number, and e-mail address.

CONTROLLING TAG SELECTION A N D O R D E R

The above DTD might work just fine for you, but it doesn’t really take advantage
of XML’s features. For example, it doesn’t specify any means of indicating which
address elements go with which offices, and it doesn’t specify any particular
order for the information. So you could create a document that lists all the
cities, streets, phone numbers, and so forth in random order, and it would still
be valid according to this DTD.

To give the DTD a meaningful structure, you need a way to tie all the com-
ponent elements for each listing together and put them in a particular order.
One way to do this is by creating a container element to contain the relevant
information for one office (we’ll call it <branchOffice>), and then specifying
which subelements must make up that container element and the order in
which they must fall. We can do all of this by adding one line to the DTD
(in bold type):

<!-- Root element is <branchOfficeDirectory> -->

<!ELEMENT branchOfficeDirectory ANY>

<!ELEMENT streetAddress (#PCDATA)>

Chapter 2: Avenue.quark Basics

24

W orking with DTDs

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT postalCode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT eMail (#PCDATA)>

<!ELEMENT branchOffice (streetAddress, city, state, postalCode, country,

phone, fax, eMail)>

What this new element says is, “If the document contains an element named
<branchOffice>, that element must contain exactly one of each of the following
elements, in this order, and nothing else.”

What if some of your branch offices have more than one line in their street
address? You can allow one or more occurrences of any element in a list of
subelements by adding + to the end of the element’s name. For example, to
allow one or more <streetAddress> elements in our <branchOffice> element,
we could do the following:

<!ELEMENT branchOffice (streetAddress+, city, state, postalCode, country,

phone, fax, eMail)>

What if some of your branch offices don’t have fax machines? What if some of
them have more than one? To specify zero or more occurrences of an element,
add *to the end of the element name, like this:

<!ELEMENT branchOffice (streetAddress+, city, state, postalCode, country,

phone, fax*, eMail)>

What if some of your branch offices are in a country that does not use postal
codes? To specify that zero or one occurrences of a given element may occur,
add a question mark to the end of the element’s name, like this:

<!ELEMENT branchOffice (streetAddress+, city, state, postalCode?, country,

phone, fax*, eMail)>

What is called a “state” in the United States may have a different name
elsewhere. Canada, for example, is divided into provinces. If you have offices in
both the United States and Canada, you may want to provide the option of
using a <state> element or a <province> element. You can do this by putting the
two options between a pair of parentheses, separated by a |character, like this:

<!ELEMENT branchOffice (streetAddress+, city, (state|province), postalCode?,

country, phone, fax*, eMail)>

Chapter 2: Avenue.quark Basics

25

W orking with DTDs

Last, you can make sure that a <branchOfficeDirectory> consists of nothing but
<branchOffice> listings by changing the definition of <branchOfficeDirectory>
from ANY to (branchOffice*). Here’s the final product:

<!-- Root element is <branchOfficeDirectory> -->

<!ELEMENT branchOfficeDirectory (branchOffice*)>

<!ELEMENT streetAddress (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT province (#PCDATA)>

<!ELEMENT postalCode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT eMail (#PCDATA)>

<!ELEMENT branchOffice (streetAddress+, city, (state|province), postalCode?,

country, phone, fax*, eMail)>

To review:

S Y M B O L M E A N I N G

None Exactly one

+ One or more

* Zero or more

? Zero or one

The special symbols can be used in conjunction with the parentheses to create
complex element type declarations such as the following DTD, designed to list
contact information on a day-by-day basis:

<!-- Root element is <contactSchedule> -->

<!ELEMENT contactSchedule (contactInfo*)>

<!ELEMENT businessPhone (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT businessFax (#PCDATA)>

<!ELEMENT homePhone (#PCDATA)>

<!ELEMENT pager (#PCDATA)>

<!ELEMENT homeFax (#PCDATA)>

<!ELEMENT awayLocation (#PCDATA)>

<!ELEMENT awayPhone (#PCDATA)>

Chapter 2: Avenue.quark Basics

26

W orking with DTDs

<!ELEMENT awayFax (#PCDATA)>

<!ELEMENT eMail (#PCDATA)>

<!ELEMENT Message (#PCDATA)>

<!ELEMENT contactInfo (date, ((businessPhone, businessFax*, eMail) |

((homePhone | awayPhone | pager)+, (homeFax* | awayFax*), eMail)),

Message?)>

On any given day, the subject of this list might be in the office, at home, or
away on a business trip. Thus, each <contactInfo> element may include one of
the following lists of information, with subelements in the order given:

• The date, a business phone number, zero or more business fax numbers, the
e-mail address, and zero or one messages.

• The date, one or more home phone numbers or pager numbers, zero or more
home fax numbers, the e-mail address, and zero or one messages.

• The date, one or more on-the-road phone numbers or pager numbers, zero or
more on-the-road fax numbers, the e-mail address, and zero or one messages.

ALLOWING EMPTY TA G S

If you want to write your XML documents so they are easily translated into
HTML format, you might want to include tags such as
 and <HR> in
your XML file, with an eye toward translating them verbatim into the HTML
file.

You can’t really do this in XML, because every element must have a closing tag.
However, you can create what are called empty tags and let an XML-to-HTML
converter translate them into the proper output tags. For example, to allow the
creation of <HR> tags, you would include the following line in the DTD:

<!ELEMENT HR EMPTY>

To use this tag, you could insert a line like the following into your XML file:

<HR/>

You can’t include it as <HR>, because every XML tag must either have a closing
tag or end with a forward slash, but an XML-to-HTML converter should convert
the <HR/> to an <HR>.

Empty tags are often used to contain images; the URL of the image data is stored
in one of the empty tag’s attributes. For more information about attributes,
see “Defining attributes” in this section.

USING CHARACTER REFERENCES

A character reference is a way of representing Unicode characters in parsed
character data. The syntax for character references is as follows:

&#UnicodeValueOfCharacter;

Chapter 2: Avenue.quark Basics

27

W orking with DTDs

For example, to insert the euro monetary sign before the number 500 in an
<amount> element, you could do the following (character reference in
bold):

<amount>€500</amount>

It is the job of the XML processor to substitute the appropriate Unicode
characters for character entity references at output.

USING ENTITY R E F E R E N C E S

An entity reference is a bit of text that represents something else, such as
a character, a string of text, an externally-stored XML file, or a binary file
(such as a picture or sound file). There are five kinds of entity references:

• Parsed internal entity represent frequently used text strings.

• Parsed external entity references are used to refer to externally-stored text files
containing parsable data.

• Unparsed external entity references are often used to refer to binary files such
as pictures, spreadsheets, and sounds.

• Internal parameter entity references represent frequently used markup declarations
within DTDs (always parsed).

• External parameter entity references refer to externally-stored text files containing
parsable data from within DTDs (always parsed).

These entity reference types are described in detail below.

What’s the difference between an entity and an entity reference? An entity
reference is the shorthand you insert into an XML document to represent an
entity. An entity is the content that replaces the entity reference when the
XML is processed.

PARSED INTERNAL ENTITY R E F E R E N C E S

A parsed internal entity reference is basically shorthand for a string of characters
that you plan to re-use often within a given XML document. The format for
declaring a parsed internal entity reference in a DTD is as follows:

<!ENTITY entityName "replacement text">

For example, say you’re building an XML document that contains a list of
employees and some information about each of them. Each employee’s record
needs to contain the phrase “Years with the company:”, followed by a number.
Rather than entering the phrase over and over again manually, you can create a
parsed internal entity reference for the phrase as part of the document’s DTD,
as follows:

<!-- Root element is <employeeListing> -->

Chapter 2: Avenue.quark Basics

28

W orking with DTDs

<!DOCTYPE employeeListing [

<!-- DTD begins here -->

<!ENTITY yrs "Years with the company:">

<!ELEMENT employeeListing (employee*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT IDnumber (#PCDATA)>

<!ELEMENT yearsWithCompany (#PCDATA)>

<!ELEMENT employee (name, IDnumber, yearsWithCompany)>

]>

To use the yrs parsed internal entity reference in the XML document, you might
do the following:

<employee listing>

<employee>

<name>Alexis Barnswallow</name>

<IDnumber>H867KL671BR</IDnumber>

<yearsWithCompany>&yrs; 12</yearsWithCompany>

</employee>

</employee listing>

When this <employee> element is processed, the XML processor will expand
the parsed internal entity reference, resulting in the following XML:

<employee>

<name>Alexis Barnswallow</name>

<IDnumber>H867KL671BR</IDnumber>

<yearsWithCompany>Years with the company: 12</yearsWithCompany>

</employee>

There are five predefined parsed internal entity references available in XML.
Unlike all other parsed internal entity references, these are part of the XML
specification and do not need to be declared.

C H A R A C T E R ENTITY R E F E R E N C E

< <

> >

& &

" "

' '

For example, say you need to use a greater than sign (>) in your XML
document’s content. As you know, the greater than sign indicates the closing of
a tag in XML. To avoid confusing the XML processor, you can substitute > for

Chapter 2: Avenue.quark Basics

29

W orking with DTDs

the greater than sign wherever it occurs. For example, to express “the whole >
the sum of its parts” in an XML file, you could do the following:

<platitude>

the whole > the sum of its parts

</platitude>

There are three restrictions to using parsed internal entity references:

• You must declare a parsed internal entity reference before you use it
(with the exception of the five listed above).

• You can use a parsed internal entity reference in element content and in
attribute values.

• You can use a parsed internal entity reference inside another parsed internal
entity reference, but only if this does not lead to a circular reference. For exam-
ple, it would be illegal to use parsed internal entity reference A in parsed internal
entity reference B if parsed internal entity reference B is used in parsed internal
entity reference A.

PARSED EXTERNAL ENTITY R E F E R E N C E S

A parsed external entity reference lets you include content stored in an
externally-located text file. Parsed external entity references should be
declared in the DTD in one of the following ways:

<!ENTITY entityName SYSTEM "URL of file to be referenced">

<!ENTITY entityName PUBLIC "name of file to be referenced"

"URL of file to be referenced">

The first example lets you use the URL of a particular file. The second example
lets you use the name of a resource, which may in turn point to a URL; the URL
that follows is a “backup” URL, to be used only if the name cannot be resolved.

Parsed external entity references can be used to share content between XML
files. For example, here’s a complete sample XML document in which the
content is stored in a text file named “myfile.txt” on Quark’s Web site:

<?xml version="1.0" standalone="no"?>

<!-- Root element is <myRoot> -->

<!DOCTYPE myRoot [

<!-- DTD begins here -->

<!ELEMENT myRoot ANY>

<!ENTITY xmlContent SYSTEM "http://www.quark.com/myfile.txt">

]>

<!-- Document begins here -->

<myRoot>

Chapter 2: Avenue.quark Basics

30

W orking with DTDs

&xmlContent;

</myRoot>

This is handy because it lets you also use the content in “myfile.txt” in
other XML files.

If a document uses external entity references, you should set the “standalone”
attribute in the XML declaration to “no.”

U N PARSED EXTERNAL ENTITY R E F E R E N C E S

What if you want to refer to a picture, spreadsheet, sound file, HTML file, or
other non-XML file in an XML document? You can’t use a parsed external entity
reference because the XML processor will try to parse your binary file, and that
will lead to errors.

To get around this problem, you can supply a notation at the end of the external
entity reference. A notation simply tells the XML processor not to parse the
target file, and indicates what kind of file it is. The format for declaring a
notation in a DTD is as follows:

<!NOTATION notationName SYSTEM "ApplicationName">

For example, to make a connection between JPEG files and Adobe Photoshop,
you could add a notation such as this one to the DTD:

<!NOTATION jpeg SYSTEM "Adobe Photoshop">

To utilize a notation in an external entity reference declaration, use the
following syntax:

<!ENTITY entityName SYSTEM "URL" NDATA notationName>

For example, to create an entity named “myPicture” that points to a URL
containing a JPEG file, you could use the following tag:

<!ENTITY myPicture SYSTEM "http://www.quark.com/picture.jpg" NDATA jpeg>

You can also use the PUBLIC syntax with notations, specifying first a public
notation name and then a backup notation URL:

<!ENTITY myPicture PUBLIC "-//Quark//Fictional JPEG Name"

"http://www.quark.com/xml/picture.jpg" NDATA jpeg>

Unparsed entity references are not the only way to refer to external files in
XML files without specifying that they must be parsed. You can also store the
URL of such a file as plain element or attribute content. The first example
below references the URL of a picture file as element content, and the second
example references the same URL as attribute content:

<myPicture>http://www.quark.com.picture.jpg</myPicture>

<myPicture URL="http://www.quark.com.picture.jpg"/>

Chapter 2: Avenue.quark Basics

31

W orking with DTDs

Whether you choose to use unparsed entities, elements, or attributes to refer to
non-XML files is up to you. Any of these methods will work equally well, as long
as the application that processes the XML knows that the URLs are URLs.

INTERNAL PARAMETER ENTITY R E F E R E N C E S

If you want to create an entity reference that is used only within a particular
DTD, you must create a parameter entity reference. An internal parameter entity
reference is very similar to a parsed internal entity reference, except it begins
with a % instead of a &, both in its declaration and when you use it:

<!ENTITY % entityName "entity definition">

%entityName;

You can use internal parameter entity references in a DTD’s external subset
in the same way that you use parsed internal entities in an XML document.
For example, here we use an internal parameter entity reference to create a
shorthand way of referring to a content model that describes a person’s name:

<!ENTITY % name (firstName, lastName) >

<!ELEMENT employerName %name;>

<!ELEMENT employeeName %name;>

<!ELEMENT customerName %name;>

This is useful because it makes it easy for you to change the definition of all
types of names at one time. So, for example, if you decided you wanted to also
store middle names for all employers, employees, and customers, you could just
change the internal parameter entity declaration above to:

<!ENTITY % name (firstName, middleName, lastName) >

Note that this kind of internal parameter entity reference can be used only in
a DTD’s external subset.

EXTERNAL PARAMETER ENTITY R E F E R E N C E S

An external parameter entity reference is very similar to a parsed external
entity reference, except it begins with a % instead of a &, both in its decla-
ration and when you use it. For example, the following two lines (from an
XML document’s internal subset) first create an entity reference pointing
to an external DTD called “standardHeader.dtd” and then include that
external DTD in the XML file:

<!ENTITY % standardHeader SYSTEM "standardHeader.dtd">

%standardheader;

For more information about this usage, see “Using public DTDs” in this section.

Parameter entity references can be used only within a DTD.

Chapter 2: Avenue.quark Basics

32

W orking with DTDs

Internal and external parameter entity references can be used together. For
example, you can use internal parameter entity references in the internal subset
to refer to entities that are defined in the external subset. This is useful because
it lets you change the definition of an entity without having to change the
internal subset of XML files that use the entity. For example, you could include
the following declaration in a text file named “entitiesFile.txt”:

<!ENTITY % nameEntity "<!ELEMENT name (firstName, lastName)>">

Then, in the internal subset of XML documents, include the following:

<!-- Include the file containing the above entity -->>

<!ENTITY % entitiesFile SYSTEM nameEntities.txt >

%entitiesFile;

<!-- Now call the entity defined in the external file -->

%nameEntity;

This would enable you to change the definition of the nameEntity entity
reference in any number of XML documents by changing it in the “entities-
File.txt” file.

DEFINING ATTRIBUTES

In addition to containing content, elements can also have attributes
(see “Understanding XML” in this chapter). There is some disagreement about
the role of attributes, but for the purpose of this discussion, we’ll assume that an
attribute should contain information about an element that is important to the
XML processor, but is not part of the content of the XML file itself.

For example, say you’re using XML to maintain a list of books for display on
a Web site. The list can be displayed in two ways: as a full list, or as a list of
all the books that have been added to the list in the past 10 days. In order to
make this work, the XML document needs to indicate the date on which
each book is entered.

You could add a <dateEntered> subtag to the definition of the <book> tag, but
the date on which a given book is entered into your system isn’t really informa-
tion about the book itself, so you might choose instead to create an attribute
named dateEntered.

The syntax for attribute declarations is as follows:

<!ATTLIST elementName attributeName AttributeType DefaultValue>

So, to give the <book> element a dateEntered attribute with a default value
of 01/01/2000, you would add the following line to the DTD:

<!ATTLIST book dateEntered CDATA "01/01/2000">

Then to use this attribute in a <book> element, you would use an attribute-
value pair, like this:

Chapter 2: Avenue.quark Basics

33

W orking with DTDs

<book dateEntered="11/11/1998">

Description of book goes here

</book>

This attribute would give the XML processor the information necessary to
display books based on their entry date.

REQUIRED, IMPLIED, AND FIXED ATTRIBUTES

Each attribute may be required, implied, or fixed. A required attribute default
specifies that the element must contain this attribute. For example, the follow-
ing attribute declaration specifies that each <book> element must have a
dateEntered attribute:

<!ATTLIST book dateEntered CDATA #REQUIRED>

An implied attribute default indicates that the element may or may not contain
this attribute, at the XML author’s discretion. For example, the following
attribute declaration specifies that each <book> may or may not contain a
dateEntered attribute:

<!ATTLIST book dateEntered CDATA #IMPLIED>

A fixed attribute value indicates that the attribute must contain an exact value
for each element. For example, the following attribute declaration specifies
that every <book> must have a dateEntered value equal to 11/11/1998:

<!ATTLIST book dateEntered CDATA #FIXED "11/11/1998">

In this example, the XML processor will assume that every <book> element has
a dateEntered attribute set to 11/11/1998, even if the attribute is omitted.

If an attribute declaration has a default value, but does not specify
#REQUIRED, #IMPLIED, or #FIXED, the XML processor will assume the
default value for the attribute whenever the attribute is omitted.

ATTRIBUTE T Y P E S

The CDATA keyword in our sample attribute declaration indicates that we
want this attribute to contain character data. However, CDATA is only one
option for attribute type. The full list follows.

• A CDATA attribute may contain character data and entity references.

• An ENTITY attribute must contain the name of an unparsed entity declared in
the DTD. (For more information about entities, see “Using entity references” in
this section.) For example, you could use an ENTITY attribute to contain the
URL of a graphic:

<!-- In the DTD -->

<!ENTITY defaultCover SYSTEM "noCover.jpg" NDATA jpg>

<!ENTITY myCover SYSTEM "myBookCover.jpg" NDATA jpg>

Chapter 2: Avenue.quark Basics

34

W orking with DTDs

...

<!ATTLIST book cover ENTITY defaultCover>

<!-- In the XML body -->

<book cover="myCover">

Description of book goes here

</book>

• An ENTITIES attribute must contain the names of one or more of the unparsed
entities declared in the DTD. The list of entities must be separated by spaces.
For example:

<!-- In the DTD -->

<!ENTITY myCover SYSTEM "myBookCover.jpg" NDATA jpg>

<!ENTITY myAuthor SYSTEM "myBookAuthor.jpg" NDATA jpg>

...

<!ATTLIST book graphics ENTITIES #IMPLIED>

<!-- In the XML body -->

<book graphics="myCover myAuthor">

Description of book goes here

</book>

• An enumerated list attribute may contain a single name from a list of names
enclosed in parentheses. (“Name” here means the values in the list must all
follow the same naming conventions as XML elements.)

To use an enumerated list attribute, add the list of names to the attribute
declaration in place of a keyword. For example, the following line specifies
that the saleStatus attribute of the <book> element may contain only
On_Sale or Regular_Price:

<!ATTLIST book saleStatus (On_Sale | Regular_Price) #IMPLIED>

• An ID attribute specifies that each element must have a unique value for that
attribute. For example:

<!-- In the DTD -->

<!ATTLIST book bookNumber ID #REQUIRED>

<!-- In the XML body -->

<book bookNumber="B068157">

Description of book goes here

</book>

An ID attribute must have a declared default of #IMPLIED or #REQUIRED.
No element may have more than one ID attribute.

Chapter 2: Avenue.quark Basics

35

W orking with DTDs

• An IDREF attribute must “point to” another element in the XML document
that has an ID attribute value. For example:

<!-- In the DTD -->

<!ATTLIST book bookNumber ID #REQUIRED>

<!ATTLIST book cataloguedIn IDREF #REQUIRED>

<!-- In the XML body -->

<book bookNumber="B000321">

A catalog of books about herbs.

</book>

<book bookNumber="B000123" cataloguedIn="B000321">

A book about herbs.

</book>

• An IDREFS attribute’s value consists of a series of IDREF attributes, sepa-
rated by spaces.

• A NMTOKEN attribute’s value may contain a variety of characters, including let-
ters, numbers, underscores, periods, and so forth, but may not contain
spaces. For example, the following example would be illegal, because the
phrase “My Local Name” contains spaces:

<!-- In the DTD -->

<!ATTLIST book localName NMTOKEN #IMPLIED>

<!-- In the XML body -->

<book localname="My Local Name">

Description of book goes here

</book>

• A N M TOKENS attribute is the same as a N M TOKEN attribute, except it speci-
fies that the attribute value may be a list of N M TOKENs separated by spaces.

<!-- In the DTD -->

<!ATTLIST XMLbook subjectType NMTOKENS #IMPLIED (xml xsl other)>

<!-- In the XML body -->

<XMLbook subjectType="xml">

Description of book goes here

</XMLbook>

• A NOTATION attribute must contain one or more XML notation names from
the DTD. This lets you create notations that specify image-viewing and
movie-playing applications, and then use an element attribute to make
sure the appropriate application is used for a given piece of content. For
example:

<!-- In the DTD -->

Chapter 2: Avenue.quark Basics

36

W orking with DTDs

<!NOTATION jpg SYSTEM "PictureViewer">

<!NOTATION mov SYSTEM "MoviePlayer">

<!ELEMENT multimediaElement EMPTY>

<!ATTLIST multimediaElement file ENTITY #REQUIRED>

<!ATTLIST multimediaElement type NOTATION #REQUIRED>

<!-- In the XML body -->

<multimediaElement file="MyImage.jpg" type="jpg"/>

<multimediaElement file="MyMovie.mov" type="mov"/>

This information lets the application that processes the XML know that it can
use the PictureViewer application to open the image file and the MoviePlayer
application to open the movie file.

No element may have more than one NOTATION attribute.

Chapter 2: Avenue.quark Basics

37

W orking with DTDs

• An enumerated NOTATION attribute must contain a list of one or more XML
notation names from the DTD, in parentheses. You might, for example, create
notations that specify multiple image-viewing and movie-playing applications,
then use an element attribute to make sure the appropriate set of applications is
used for a given piece of content. Here’s how it might look:

<!-- In the DTD -->

<!NOTATION picViewer SYSTEM "PictureViewer">

<!NOTATION photoshop SYSTEM "Photoshop.exe">

<!NOTATION movPlyrMac SYSTEM "MoviePlayer">

<!NOTATION movPlyrWin SYSTEM "Movieplayer.exe">

<!ELEMENT image EMPTY>

<!ATTLIST image file ENTITY #REQUIRED>

<!ATTLIST image imageApp NOTATION (picViewer | photoshop)

#REQUIRED>

<!ELEMENT movie EMPTY>

<!ATTLIST movie file ENTITY #REQUIRED>

<!ATTLIST movie movieApp NOTATION (movPlyrMac | movPlyrWin)

#REQUIRED>

<!-- In the XML body -->

<image file="MyImage.jpg" imageApp="picViewer"/>

<movie file="MyMovie.mov" movieApp="movPlyrMac"/>

Here, instead of creating one element for both images and movies, we create
two separate elements, <image> and <movie>. For each of these elements,
the DTD specifies two applications that might be used to view the file. The
determination of which application to use is made in each individual <ele-
ment> tag in the XML body.

THE XML:LANG ATTRIBUTE

The xml:lang attribute lets you specify which language is used in an element.
This attribute should contain one of the following:

• A two-letter language code defined by ISO 639, optionally followed by a hyphen
and a subtype (typically a country code)

• An IANA-registered language number, prefixed with “i-” or “I-”

• A user-defined language code, prefixed with “x-” or “X-”

Note that these attributes are not predefined — you must declare them before
you use them.

Chapter 2: Avenue.quark Basics

38

W orking with DTDs

To indicate the language you want, simply assign that language’s code. For
example, the following DTD specifies an xml:lang element, and the element in
the XML body specifies the English language using ISO 639:

<!-- In the DTD -->

<!ELEMENT Paragraph (#PCDATA)>

<!ATTLIST Paragraph xml:lang NMTOKEN #REQUIRED>

<!-- In the XML body -->

<Paragraph xml:lang="en">

Paragraph data goes here.

</Paragraph>

You can specify language subtypes by adding a hyphenated extension to the
language name. For example, the following element specifies International
English (used in the United Kingdom), as opposed to U.S. English:

<!-- In the XML body -->

<Paragraph xml:lang="en-GB">

Paragraph data goes here.

</Paragraph>

THE XML:SPACE ATTRIBUTE

The xml:space attribute lets you indicate to the application that processed the
XML that it should leave all white space for an element and its children as is
(unless one of the element’s children resets the tag). For example, the following
DTD specifies an xml:space attribute, and the element in the XML body sets that
attribute to preserve for that element and its children:

<!-- In the DTD -->

<!ELEMENT Paragraph (#PCDATA)>

<!ATTLIST Paragraph xml:space (default | preserve) "default">

<!-- In the XML body -->

<Paragraph xml:space="preserve">

Paragraph data goes here.

All

white

space

preserved.

</Paragraph>

IGNORE AND INCLUDE

You can use the <![IGNORE[]]> tag to tell the XML parser to ignore a stretch of
text in an external DTD. Take for example the following:

Chapter 2: Avenue.quark Basics

39

W orking with DTDs

<-- This element declaration is parsed as usual: -->

<!ELEMENT studentStep (#PCDATA)>

<![IGNORE[

<-- This element declaration is ignored by the XML parser: -->

<!ELEMENT instructorNote (#PCDATA)>

]]>

You can tell the XML parser to parse the text within the tags by simply changing
the IGNORE to an INCLUDE, as follows:

<-- This element declaration is parsed as usual: -->

<!ELEMENT studentStep (#PCDATA)>

<![INCLUDE[

<-- This element declaration is now also parsed as usual: -->

<!ELEMENT instructorNote (#PCDATA)>

]]>

USING PUBLIC DTDS

As we mentioned earlier, you can refer to an external DTD in an XML
document’s DOCTYPE declaration, like this:

<?xml version="1.0" standalone="no">

<!-- DTD begins here -->

<!DOCTYPE myDocument SYSTEM "mydocument.dtd">

<!-- Document begins here -->

<myDocument>

...

If you are using a DTD that has been approved by a body such as the Interna-
tional Standards Organization (ISO), you can use a PUBLIC entity reference that
specifies the name of a publically available copy of the DTD. When you do this,
you must also supply the URL of a SYSTEM DTD file, so there’s something to
fall back on if the PUBLIC copy of the DTD is unavailable.

<?xml version="1.0" standalone="no">

<!-- DTD begins here -->

<!-- First URL below is PUBLIC DTD, second is backup SYSTEM DTD -->

<!DOCTYPE stdDoc PUBLIC "-//Quark//DTD stdDoc 1.0//EN"

"http://www.quark.com/xml/stdDoc.dtd">

<!-- Document begins here -->

<stdDoc>

...

Chapter 2: Avenue.quark Basics

40

W orking with DTDs

Chapter 2: Avenue.quark Basics

41

W orking with DTDs

COMBINING DTDS TO CREATE COMPOSITE DTDS

Sometimes you may create separate DTDs to define different parts of a
document. For example, your organization may use one DTD for all of its XML
files’ header and footer information, but different DTDs for the body of docu-
ments produced in different parts of the company. You can accommodate
such situations by creating a single new DTD that includes the various DTDs
you need and specifies an order for their root elements, like this:

<!ENTITY % standardHeader SYSTEM "standardHeader.dtd">

<!ENTITY % QARept SYSTEM "QARept.dtd">

<!ENTITY % standardFooter SYSTEM "standardFooter.dtd">

%standardHeader;

%QARept;

%standardFooter;

<!-- Root element is <QAReptDoc> -->

<!ELEMENT QAReptDoc (standardHeader, QARept, standardFooter)>

For documents created with this DTD, <QAReptDoc> would be the root ele-
ment, and <standardHeader>, <QARept>, and <standardFooter> would be its
immediate subelements. A document that uses this DTD might look something
like this:

<?xml version="1.0" standalone="no"?>

<!-- The following line specifies a root element (<QAReptDoc>) and points to the

URL of an external DTD file named

"QAReptDoc.dtd" -->

<!DOCTYPE QAReptDoc SYSTEM QAReptDoc.dtd">

<!-- Document begins here -->

<QAReptDoc>

<standardHeader>

<!-- Standard header content goes here -->

</standardHeader>

<QARept>

<!-- QA report content goes here -->

</QARept>

<standardFooter>

<!-- Standard footer content goes here -->

</standardFooter>

</QAReptDoc>

Chapter 2: Avenue.quark Basics

42

W orking with DTDs

MAKING LOCAL MODIFICATIONS TO IMPORTED DTDS

Some workflows may involve DTDs that are almost identical for a group of
users, but which require small adjustments to work in any particular depart-
ment or group. This is easy to arrange; just include the DTD in the DOCTYPE
declaration, then add any necessary markup declarations to the internal subset.
You cannot redefine an element that is already defined in the external DTD,
but you can redefine entities and default values for attributes.

VALIDATING AN XML FILE AGAINST A D T D

If you’re writing your XML documents with a word processor, you can read
through the corresponding DTD and make sure that you follow the rules.
But you won’t really know for sure whether you did until you validate the
XML document against the DTD using a program called a validating parser.
The validating parser reads the DTD and then checks your XML file to make
sure it adheres to the DTD’s rules. A good validating parser should also tell
you what problems it finds (if any).

Remember that if you want to check an XML document for adherence to a
particular DTD, you need a validating XML parser, not just a plain XML parser.
There are many XML parsers that will tell you if an XML file is well-formed,
but considerably fewer that will tell you if an XML file is valid.

For a quick reference to DTD features and conventions, see Appendix B,
“DTD Quick Reference,” in Chapter 7, “Appendices.”

INDUSTRY-STANDARD DTDS

Should you develop a new DTD, custom-designed to fit the needs of your organization?
Or should you use an industry-standard DTD that will save you development time and
let you easily exchange information with other organizations in your industry?

There are advantages to both approaches. If you create your own DTD from scratch,
you have total control over the structure of that DTD and the process of updating it.
However, you’re also looking at a significant investment of time and effort, and you
must be very careful to consider the needs of everyone who will be using that DTD.
If you use an industry-standard DTD, you don’t have to go through the DTD develop-
ment process, but you have to follow the DTD’s conventions and adhere to the structure
it defines.

PROS AND CONS OF USING INDUSTRY-STANDARD DTDS

If you plan to exchange information with other organizations, an industry-
standard DTD might be a good idea. Using an industry-standard DTD can help
ensure that information exchange goes smoothly, and that the information you
tag can be re-used in other contexts. Indeed, this is one of the reasons XML was

Chapter 2: Avenue.quark Basics

43

Industry-Standard DTDs

developed: to help standardize the formats in which information is stored
and exchanged.

Using an industry-standard DTD can present its own challenges, because two
organizations may have very different needs, even if the data they work with is
essentially the same. Industry-standard DTDs can be modified for use within an
organization, but that partially defeats their purpose, which is to ensure that
information is stored in a consistent format between organizations.

CAN I USE AN INDUSTRY-STANDARD DTD?

Whether you can use an industry-standard DTD depends on a number
of factors.

DOES AN INDUSTRY-STANDARD DTD EXIST FOR YOUR INDUSTRY?

To find out the answer to this question, you can look for industry-standard
DTDs on the World Wide Web. Two good places to look are www.schema.net
and www.xml.org.

IF AN INDUSTRY-STANDARD DTD EXISTS, DOES IT M E E T Y O U R

N E E D S ?

If you locate an industry-standard DTD that seems like it might work for
your organization, review it carefully before you begin using it. The use of an
inappropriate DTD can lead to serious problems. For example, an inappro-
priate DTD can:

• Force authors to use unfamiliar and inappropriate structures.

• Require authors to shoehorn data into inappropriate elements.

• Restrict authors’ ability to index and search information.

• Provide too much leeway, leading to improper markup.

• Make conversion to other formats more difficult.

• Force applications that process data to be overly complex.

• Incur huge expenses if the DTD ultimately turns out to be unusable, forcing
you to convert all of your data to a different format.

Think carefully about this question; if the DTD you choose does not meet your
needs, the cumulative effect of any shortcomings will probably grow with time.

IF NO INDUSTRY-STA N D A R D D T D EXISTS FOR YOUR INDUSTRY, IS

ONE IN DEVELOPMENT?

If you can’t find an industry-standard DTD that fits your organizational needs,
you might want to find out if anyone else in your industry is developing one.
If so, your organization may have a chance to bring its particular expertise to
bear in the development of the DTD. Participation in the development of an
industry-standard DTD can help you avoid problems that can result from
adopting a DTD developed by someone who doesn’t understand your needs.

Chapter 2: Avenue.quark Basics

44

Industry-Standard DTDs

EXTENDING INDUSTRY-STANDARD DTDS

Some organizations choose to use an industry-standard DTD, but modify
that DTD to make it suit their particular needs. For example, to make the
ISO-standard “book” SGML DTD work for them, the University of California
Press made a series of adjustments to it, adding elements that let them store
information such as chapter subtitles and chapter-specific bylines. The ISO
(International Standards Organization) provides guidelines for modifying
its DTDs, so even if you make such modifications, your new DTD is still
somewhat standardized.

What if you need to exchange data with other organizations that use the
original, unmodified DTD? Some organizations choose to create utilities that
can convert documents that adhere to their modified DTD into documents
that adhere to the original form of the DTD. This kind of solution gives you
many of the advantages of having a customized DTD, yet still allows you to
exchange data with other organizations in the industry.

Chapter 3: XML W orkspace Palette

45

XML W orkspace Palette

Chapter 3: XML Workspace Palette

Palettes are movable interface windows that provide you with the commands and

features you need to complete specific tasks. Palettes are especially convenient because

they can be placed anywhere on your screen, allowing you to customize your workspace.

Click and drag the bar at the top of a palette to reposition it. You can resize most

palettes by dragging the resize box in the lower right corner of the palette.

X M L W O R K S PACE PALETTE

Avenue.quark provides you with the XML Workspace palette, which displays
an XML document as an easy-to-understand hierarchical “tree.” You can use the
XML Workspace palette to create, edit, view, and save XML documents from
within QuarkXPress.

The XML Workspace palette (File & New & XML) lets you view and edit the
content of an XML document.

XML W orkspace palette

Chapter 3: XML W orkspace Palette

46

XML W orkspace Palette

S AVE (BUTTON)

Clicking the Save button saves the active XML document. If the active
XML document has not yet been saved, clicking the Save button displays
the Save As dialog box, which lets you specify the name, location, type,
and character encoding for the document.

S AVE AS (BUTTON)

The Save As button displays the Save As dialog box, which lets you specify
the name, location, type, and character encoding for the active XML document.

S AVE AS (DIALOG BOX)

The Save As dialog box lets you specify the name, location, type, and character
encoding for the active XML document.

Save As dialog box

The Save current XML as field lets you enter a name for the active
XML document.

The Save as Type pop-up menu offers two options:

• Choosing XML Document specifies that the active layout should be saved as
an XML document.

• Choosing avenue.quark Template specifies that the active XML document
should be saved as a template that can be used as a basis for new XML documents.

Chapter 3: XML W orkspace Palette

47

XML W orkspace Palette

The Encoding pop-up menu lets you choose a character encoding method
for the XML document. The available options are UTF-8, and UTF-16 (Uni-
code). UTF-8 is selected by default.

Check Save XML as Standalone if you want to include the entire DTD in
the XML file. Uncheck Save XML as Standalone to include only the name
of the external DTD file.

Check Exclude avenue.quark Processing Instructions if you do not want
avenue.quark to create processing instructions. Uncheck Exclude avenue.quark
Processing Instructions to let avenue.quark create processing instructions.
Processing instructions are customized commands inserted in the XML document
that tell other applications how to process particular types of information.

R E V E RT TO SAVED (BUTTON)

The Revert to Saved button lets you discard changes and restore the active
XML document to the most recently saved version.

PREVIEW XML (BUTTON)

The Preview XML button displays the Preview XML dialog box, which lets
you view the active XML document as XML text. You can copy and paste from
this window, but you cannot edit the text.

Preview XML dialog box

Chapter 3: XML W orkspace Palette

48

XML W orkspace Palette

Although upper-ASCII characters (characters above ASCII 127) display unaltered
in the Preview XML dialog box, such characters are converted to the appro-
priate codes at export, depending on the encoding method you choose in
the Save As dialog box.

SYNCHRONIZE CONTENT (BUTTON)

The Synchronize Content button synchronizes the content of elements
in the active XML document with the corresponding content in the active
QuarkXPress layout or layouts.

PENCIL (ICON)

A pencil icon displays in the upper-right corner of the XML Workspace
palette, indicating the active XML document.

TAGGING RULE SET (POP-UP M E N U)

The Tagging Rule Set pop-up menu lets you choose a tagging rule set for use
with the active XML document. This pop-up menu displays only those tagging
rule sets that are associated with the active XML document.

X M L TREE (LIST)

The XML Tree list displays a hierarchical tree representation of the XML
document. You can display and hide the contents of container elements
and attributes by clicking the and > disclosure triangles (Mac OS) or the
and disclosure boxes (Windows). You can scroll through the XML Tree list
using the horizontal and vertical bars or using the arrow keys.

Chapter 3: XML W orkspace Palette

49

XML W orkspace Palette

XML Tree list

Different types of items in the XML Tree list have different icons:

• ANY elements

• Attributes

• Comments

• Container elements

• EMPTY elements

• Mixed content elements

• PCDATA elements

• Processing instructions

C O N T E N T PREVIEW (LIST)

The Content Preview list displays the content of the element, attribute, or
comment selected in the left side of the list. Content that is too large to display
fully is indicated with ellipsis points (...).

Chapter 3: XML W orkspace Palette

50

XML W orkspace Palette

Content Preview list

An attribute’s content is handled differently according to its type (which
is specified in the DTD). The content of different attribute types displays
as follows:

• If an attribute has a default value, the default value displays.

• If an attribute has a fixed value, that value displays.

• If an attribute is required and does not have a default or fixed value,
avenue.quark will insert an underline (_) when the XML document is saved;
this keeps the XML file valid. You can change this value later by opening the
XML file in a text editor.

• Implied (optional) attributes are editable and display their default values in
the Content area. If no default value is specified, nothing displays. If you do
not change the implied attribute’s value, the implied attribute is not included
in the XML file when the XML document is saved.

• Fixed attributes display with a lock icon y.

If an element, comment, PCDATA block, or processing instruction is linked to
content in a QuarkXPress layout, and that content has changed since the last
time the XML document was closed, the right side of the XML Tree list dis-
plays a icon.

Both the right side of the XML Tree list and the Content field display the
content of the selected element, comment, or processing instruction. You can
edit the content in the Content field.

Chapter 3: XML W orkspace Palette

51

XML W orkspace Palette

X M L TREE (CONTEXT M E N U)

Control+clicking (Mac OS) or right-clicking (Windows) an element displays
a context menu with the following options (note that not all the following
options are available for all elements):

XML Tree context menu

• Choosing Insert Child lets you insert an element, comment, processing
instruction, or PCDATA block as an immediate child of the selected element.

• Choosing Insert Sibling Before lets you insert an element, comment, processing
instruction, or PCDATA block before the selected item.

• Choosing Insert Sibling After lets you insert an element, comment, processing
instruction, or PCDATA block after the selected item.

• Choosing Replace lets you replace the selected element with a different element.

• Choosing Delete displays the Delete dialog box, which lets you delete the
selected item. In this dialog box, any required elements that will also be
deleted display in red struck-through text. This action cannot be undone.

• Choosing Show Content Source scrolls to and highlights the source of
the selected XML element (if the content originated in the active
QuarkXPress layout).

• Choosing Delete Content lets you delete the content of the selected item. This
option is available when the selected item has content or after a link is broken.
Note that choosing this item does not delete content from the active
QuarkXPress layout — only from the selected element in the active XML
document.

When you choose Insert Child, Insert Sibling Before, Insert Sibling After, or
Replace, a submenu displays, containing a list of the items that may legally be
inserted or substituted. This submenu also contains an Insert with Preview
menu item, which displays a preview dialog box.

Chapter 3: XML W orkspace Palette

52

XML W orkspace Palette

A preview dialog box.

• The Items list displays a list of items that may be inserted or substituted.

• The XML Tree Preview list shows the selected item and any of its mandatory
children (in black), in the context of the XML tree (in gray); you can think of
it as a preview of how the document will look after the change.

Click OK to complete the insertion or replacement, or Cancel to stop it.

Some elements have mandatory children. If you insert such an element, its
mandatory children must also be inserted. Clicking an element’s > disclosure
triangle (Mac OS) or the disclosure box (Windows) displays any child
elements that must also be inserted along with that element. Clicking this
icon does not display any optional children an element might have.

If an inserted element requires one of a list of non-optional elements (for exam-
ple, (a | b | c)), avenue.quark uses the first element in the list (here, a). If the ele-
ment requires one of a list of elements, and one or more of those elements is
optional (for example, (a | b | c?)), avenue.quark leaves the element empty.

C O N T E N T (AREA)

The Content area lets you add to, edit, and delete the content of the element,
attribute, or comment selected in the XML Tree list.

Chapter 3: XML W orkspace Palette

53

XML W orkspace Palette

Content area

Both the right side of the XML Tree list and the Content field display the
content of the selected element, attribute, or comment.

BREAK DYNAMIC LINK (BUTTON)

If you drag content from a QuarkXPress layout to an attribute or element, a
link is formed between that content and the element in the XML document.
This means you can edit the content of the XML document only by editing
the content in the QuarkXPress layout.

If you want to sever the link between an element in the active XML file and the
QuarkXPress layout from which it came, select the element name in the
XML Tree list and then click the Break Dynamic Link button .

G E N E R ATE ID (BUTTON)

For ID attributes, the Generate ID button is available in the Content area.
This button replaces the current content of the selected attribute with an
automatically generated value that is unique within the active XML file.

C O N T E N T (FIELD)

The Content field lets you edit the content of elements and attributes that
are not linked to QuarkXPress content. The Content field supports cutting,
copying, and pasting of most types of attributes.

Chapter 3: XML W orkspace Palette

54

XML W orkspace Palette

Content field

The Content field works differently for some types of attributes, as
indicated below.

E N U M E R AT E D ATTRIBUTES

An enumerated attribute may contain one of a series of values. For enumerated
attributes, the Content field displays a list of valid values. You can select only
one option at a time. If no default value is specified in the DTD, the top option
is initially selected.

Content field for enumerated attribute

ID ATTRIBUTES

An ID attribute may contain only a value that meets these criteria:

• The value must begin with a letter, underscore, or colon, with remaining charac-
ters consisting of letters, digits, underscores, hyphens, and colons, but no spaces.

• The value must be unique within the XML document.

Chapter 3: XML W orkspace Palette

55

XML W orkspace Palette

For ID attributes, the Generate ID button is available in the Content area.
This button replaces the current contents of the selected attribute with an
automatically-generated value that is unique within the active XML file.

IDREF ATTRIBUTES

An IDREF attribute may contain only an ID attribute value that is used either
elsewhere in the active XML document or in an XML document referred to
by the active XML document.

For IDREF attributes, the Content field displays a list of the ID attributes used
in the active XML document, as well as the Other option. Clicking Other dis-
plays a dialog box that lets you enter an IDREF value. You can select only one
IDREF value at a time. By default, the None option is selected.

Content field for an IDREF attribute

IDREFS ATTRIBUTES

An attribute may contain one or more ID attribute values that are used either
in the active XML document or in an XML document referred to by the active
XML document.

For IDREFS attributes, the Content field displays a list of the ID attributes used
in the active XML document, as well as the Other option. Clicking Other dis-
plays a dialog box that lets you enter an IDREF value. You can enter as many
IDREF values as you like, separated by spaces.

N M TO K E N ATTRIBUTES

A N M TOKEN attribute may contain only a value that begins with a letter,
underscore, or colon, with remaining characters consisting of letters, digits,
underscores, hyphens, and colons, but no spaces.

For N M TOKEN attributes, the Content field will accept only one N M TOKEN
value.

N M TO K E N S ATTRIBUTES

A N M TOKENS attribute may contain a series of values that begin with a let-
ter, underscore, or colon, with remaining characters consisting of letters, dig-
its, underscores, hyphens, and colons, but no spaces.

Chapter 3: XML W orkspace Palette

56

XML W orkspace Palette

For NMTOKENS attributes, the Content field will accept a series of NMTOKEN
values, separated by single spaces.

ENTITY ATTRIBUTES

An ENTITY attribute may contain only the name of an entity defined within the
active XML document. For ENTITY attributes, the Content field displays a list of
the entities defined in the active XML document. You can select only one entity
name at a time.

If there is a default entity value, it is selected. If not, the first entity value is
selected by default.

Content field for an ENTITY attribute

ENTITIES ATTRIBUTES

An ENTITIES attribute may contain only a list of entities defined within the
active XML document. For ENTITIES attributes, the Content field displays a list
of the entities defined in the active XML document. You can select as many of
these entity values as you like.

Chapter 4: Menus and Dialog Boxes

57

Preference Settings

Chapter 4: Menus and Dialog Boxes

Menus group an application’s primary functions and make them readily

available, while dialog boxes offer easy access to a variety of controls. Menus

and dialog boxes let you ”feel” your way through an application and learn it

by intuition.

The menus and dialog boxes in the avenue.quark interface make it easy for

you to tag the content of QuarkXPress layouts, save that content in XML for-

mat, and identify the tagged content in the QuarkXPress layout it came from.

PREFERENCE SETTINGS

The QuarkXPress menu (Mac OS) or Edit menu (Windows) lets you display
the Preferences dialog box, where you can specify avenue.quark preferences.

AVENUE.QUARK PREFERENCES (PANE)

QuarkXPress & Preferences & avenue.quark pane (Mac OS),

Edit & Preferences & avenue.quark pane (Windows)

The avenue.quark pane lets you specify how tagged content displays on-screen,
control the color of marker text, and turn dynamic content updating on and off.

Chapter 4: Menus and Dialog Boxes

58

Preference Settings

avenue.quark pane of the Preferences dialog box

S H O W TA G G E D C O N T E N T (AREA)

QuarkXPress& Preferences & avenue.quark pane (Mac OS),

Edit & Preferences & avenue.quark pane (Windows)

The Show Tagged Content area lets you specify the colors used to display
tagged and untagged content when Show Tagged Content is selected in the
Utilities menu. To change the display color for tagged content, click the Tagged
Text button. To change the display color for untagged content, click the
Untagged Text button.

Show Tagged Content area

Chapter 4: Menus and Dialog Boxes

59

Preference Settings

ENABLE DYNAMIC CONTENT U P D ATE (CHECK BOX)

QuarkXPress& Preferences & avenue.quark pane (Mac OS),

Edit & Preferences & avenue.quark pane (Windows)

The Enable Dynamic Content Update button lets you specify whether the
content of elements in active XML documents should be continuously updated
to reflect the content of the QuarkXPress items they’re linked to. You might
want to uncheck this button if QuarkXPress seems to be running very slowly
when editing large XML documents; when this box is unchecked, you can
manually update the content by clicking the Synchronize Content button
in the XML Workspace palette.

Enable Dynamic Content Update check box

ALW AYS INSERT R E P E ATING ELEMENTS AT THE END OF THE CURRENT

BRANCH (CHECK BOX)

QuarkXPress& Preferences & avenue.quark pane (Mac OS),

Edit & Preferences & avenue.quark pane (Windows)

The Always insert repeating elements at the end of the current branch
check box controls the placement of new repeating elements (elements marked
with a + or * in the DTD). When this box is checked, avenue.quark always puts
new repeating elements at the end of the active branch. When this check box is
unchecked, avenue.quark displays the Choose Rule/Position dialog box and
lets you manually choose the position of a new repeating element.

Always insert repeating elements at the end of the current branch check box

ALW AYS USE FIRST AVAILABLE PATH FOR ELEMENTS WITH MULTIPLE

INSERTION POINTS (CHECK BOX)

QuarkXPress& Preferences & avenue.quark pane (Mac OS),

Edit & Preferences & avenue.quark pane (Windows)

The Always use first available path for elements with multiple insertion
paths check box controls the placement of new elements that could be inserted
in a number of places according to the DTD. For example, say a tagging rule
calls for the creation of a <paragraph> element. If the DTD states that a new
<paragraph> element may be created either at the end of the current branch or

Chapter 4: Menus and Dialog Boxes

60

Preference Settings

as a child of a new <sidebar> element, which kind of <paragraph> element
should avenue.quark generate? If this check box is checked, avenue.quark
creates the first <paragraph> element it finds in the DTD tree (a <paragraph>
element at the root level of the current branch). If this check box is unchecked,
avenue.quark displays the Choose Rule/Position dialog box.

Always use first available path for elements with multiple insertion pointscheck box

ALW AYS USE THE FIRST APPLICABLE TAGGING RULE (CHECK BOX)

QuarkXPress& Preferences & avenue.quark pane (Mac OS),

Edit & Preferences & avenue.quark pane (Windows)

The Always use the first applicable tagging rule check box applies to tagging
rule conflicts. When this box is checked, avenue.quark always chooses the
first of a series of applicable rules in tagging rule conflicts. When this box is
unchecked, avenue.quark displays the Choose Rule/Position dialog box and
lets you manually choose the element type to be applied to the selected text
or click Choose Automatically.

Always use the first applicable tagging rule check box

P L A C E H O L D E R PREFERENCES (PANE)

QuarkXPress& Preferences & Placeholders (Mac OS), Edit & Preferences

& Placeholders pane (Windows)

The Placeholders pane lets you set preferences for tag brackets. Use the
Placeholder Descriptor area to specify the tag bracket color settings.

PLACEHOLDER DESCRIPTOR (AREA)

QuarkXPress& Preferences & Placeholders pane (Mac OS),

Edit & Preferences & Placeholders pane (Windows)

The Placeholder Descriptor area specifies the color and shade of tag brack-
ets.

Chapter 4: Menus and Dialog Boxes

61

Preference Settings

Placeholder Descriptor area

COLOR (BUTTON)

QuarkXPress& Preferences & Placeholders pane (Mac OS),

Edit & Preferences & Placeholders pane (Windows)

The Color button lets you specify the color of the brackets that surround
tagged text when you choose View & Show Invisibles. To change the color of
the brackets, click the button.

SHADE (POP-UP MENU AND FIELD)

QuarkXPress& Preferences & Placeholders pane & Placeholder Descriptor

area (Mac OS), Edit & Preferences & Placeholders pane & Placeholder

Descriptor area (Windows)

The Shade pop-up menu and field lets you specify the percentage of color
that is applied to the brackets that surround tagged text when you choose
View & Show Invisibles. To change the shade of the brackets, enter a new per-
centage in the field, or choose a percentage from the pop-up menu.

FILE MENU

When avenue.quark is installed, the QuarkXPress File menu lets you create a
new XML document.

X M L (COMMAND)

File & N e w

The XML command (C+Shift+X on Mac OS, Ctrl+Shift+X on Windows)
displays the New XML dialog box, which lets you select a DTD, root element,
and tagging rule set for a new XML document.

Chapter 4: Menus and Dialog Boxes

62

Preference Settings

XML command

N E W X M L (DIALOG BOX)

File & N e w & X M L

The New XML dialog box lets you specify a template, DOCTYPE, and
default tagging set for a new XML document.

New XML dialog box

T E M P L ATE (LIST)

File & N e w & X M L

The Template list lets you select the XML template you would like the new
XML document to be based on. The list menu displays the names of all XML
templates in the “Templates” folder in the QuarkXPress folder. To create XML
templates, see “Working with XML Templates” in Chapter 6, “Tagging Content.”

Chapter 4: Menus and Dialog Boxes

63

Preference Settings

Template list

To create a new XML document that is not based on a template, select Custom
in the Template list.

DOCTYPE (AREA)

File & N e w & X M L

The DOCTYPE area lets you select a DTD and root element for a new XML
document. If you select Custom in the Template list, you can click Import to
import a DTD and then choose a root element from the Root Element pop-up
menu. If you select a template in the Template list, the template’s DTD and
root element display, but cannot be changed.

DOCTYPE area

• Clicking the Import button displays a dialog box that lets you import a
new DTD.

• The Root Element pop-up menu lets you choose a root element from the list of
element types in the selected DTD. The root element you choose determines the
configuration of the XML tree displayed in the XML Workspace palette.

Chapter 4: Menus and Dialog Boxes

64

Preference Settings

TAGGING RULE SET (AREA)

File & N e w & X M L

The Tagging Rule Set area lets you choose a default tagging rule set for the
new XML document.

Tagging Rule Set area

The Default Set pop-up menu displays a list of tagging rule sets associated with
the root element/DTD pair selected in the DOCTYPE area, or None if no tag-
ging rule sets are associated with that pair.

The tagging rule set chosen in the Default Set pop-up menu is the default
selection displayed in the Tagging Rule Set pop-up menu in the XML Work-
space palette. The tagging rule set can be changed at any time in the XML
Workspace palette.

EDIT M E N U

The Edit menu lets you create tagging rule sets and categories.

Chapter 4: Menus and Dialog Boxes

65

Edit Menu

Tagging Rules command

TAGGING RULES (COMMAND)

Edit & Tagging Rules

The Tagging Rules command displays the Tagging Rules dialog box,
which lets you create, edit, duplicate, and delete tagging rule sets for the
active XML document.

TAGGING RULES (DIALOG BOX)

Edit & Tagging Rules

The Tagging Rules dialog box lets you create, edit, duplicate, and delete tagging
rule sets for the DOCTYPE of the active XML document. The tagging rule sets

Chapter 4: Menus and Dialog Boxes

66

Edit Menu

you create in this dialog box are available in the Tagging Rule Set pop-up menu
in the document’s XML Workspace palette.

Tagging Rules dialog box

• The DOCTYPE field displays the DOCTYPE used by the active document,
including the DTD and the <root element>.

• The Tagging Rule Set list displays a list of tagging rule sets for the XML
document and lets you choose a tagging rule set to edit.

• The New Set button displays the Edit Tagging Rules dialog box, which lets
you create a new tagging rule set for the XML document.

• The Edit button displays the Edit Tagging Rules dialog box, which lets you
edit the tagging rule set selected in the Tagging Rule Set list.

• The Duplicate button creates a copy of the tagging rule set selected in the
Tagging Rule Set list. For more information about the Edit Tagging Rules
dialog box, see “Edit Tagging Rules (dialog box)” in this section.

• The Delete button removes the tagging rule set selected in the Tagging
Rule Set list.

• The Save button saves changes made to any tagging rule set in the Tagging
Rules dialog box. When you click Save, avenue.quark closes the dialog box.

• The Cancel button closes the Tagging Rules dialog box and discards any
changes made since opening it.

Tagging rule sets are saved as part of avenue.quark XML documents; they
are not stored in a preferences file.

Chapter 4: Menus and Dialog Boxes

67

Edit Menu

EDIT TAGGING RULES (DIALOG BOX)

Edit & Tagging Rules & New Set, Edit, or Duplicate

Clicking New Set, Edit, or Duplicate in the Tagging Rules dialog box
displays the Edit Tagging Rules dialog box, which lets you create and edit
tagging rule sets.

Edit Tagging Rules dialog box

• The Name field lets you name a new tagging rule set or rename an existing
tagging rule set.

• Below the Name field are the DTD Tree list, the Rules list, and the Rule Setting
area. The DTD Tree list (on the left side of the dialog box) displays a tree view of
the DTD and its element types — including optional element types — and lets
you select an element type for which to define tagging rules. The right side of
the dialog box lets you specify tagging rules for the selected element type.

You can use the Tab key to move from the selected element in the DTD list
through the steps in the dialog box required to define a tagging rule.

DTD TREE (LIST)

Edit & Tagging Rules & New Set, Edit, or Duplicate

The DTD Tree list displays the selected DTD. You can scroll through the list
using the horizontal and vertical bars or the arrow keys. You can display or hide

Chapter 4: Menus and Dialog Boxes

68

Edit Menu

the contents of container elements by clicking the and > disclosure triangles
(Mac OS) or the and disclosure boxes (Windows).

DTD Tree list

A symbol at the beginning of each element’s name indicates how many of that
element may be contained by the parent element type:

• indicates one and only one

• indicates zero or one

• indicates one or more

• indicates zero or more

A symbol at the end of an element’s name indicates the relationship this ele-
ment can have with other elements:

• indicates that this element must be followed by the next element

• indicates that either this element or the next element may be used here

If an element’s name is bold and black, you can create tagging rules for that
element type. If an element’s name is bold, black, and italic, the tagging rule
set already contains at least one rule for that element type. If an element’s
name is unavailable, no tagging rules may be created for that element type.

ADD RULE, DUPLICATE, AND DELETE (BUTTONS)

Edit & Tagging Rules & New Set, Edit, or Duplicate

The Add Rule, Duplicate, and Delete buttons let you add, duplicate, and delete
tagging rules in the Rules list.

Chapter 4: Menus and Dialog Boxes

69

Edit Menu

Add Rule, Duplicate, and Delete buttons

• Clicking the Add Rule button lets you add a tagging rule to the Rules list

• Clicking the Duplicate button lets you duplicate the tagging rule selected
in the Rules list

• Clicking the Delete button lets you delete the tagging rule selected in the
Rules list

RULES (LIST)

Edit & Tagging Rules & New Set, Edit, or Duplicate

The Rules list displays the tagging rules for the selected element type. The
rule names in this list reflect the selections made in the Rule Setting area
for each rule.

To edit a tagging rule, select its name in the list and change its definition
in the Rule Settings area.

Rules list

Chapter 4: Menus and Dialog Boxes

70

Edit Menu

RULE SETTINGS (AREA)

Edit & Tagging Rules & New Set, Edit, or Duplicate

The Rule Settings area lets you configure the tagging rule selected in
the Rules list. The options available in this area are based on the active
QuarkXPress layout.

Rule Settings area

• The Style Sheet check box and pop-up menu let you specify that text that
uses a particular paragraph or character style sheet should be tagged with the
selected element type. Checking New tag for each paragraph specifies that
avenue.quark should tag each paragraph styled with the indicated style sheet
as a separate element (if the DTD permits it). Unchecking New tag for each
paragraph specifies that avenue.quark should tag a range of paragraphs
styled with the indicated style sheet as a single element.

• The Font check box and pop-up menu let you specify that only text that
uses a particular font should be tagged with the selected element type.

• The Size check box and pop-up menu let you specify that only text of a
particular size should be tagged with the selected element type.

• The Color check box and pop-up menu let you specify that only text that
uses a particular color should be tagged with the selected element type.

• The Type Style check box and button list let you specify that only text that
uses a particular type style should be tagged with the selected element type.

• The Picture check box lets you tag pictures for XML export. You can import
tagged pictures back into QuarkXPress using Placeholders or XML Import
QuarkXTensions software.

Chapter 4: Menus and Dialog Boxes

71

Utilities Menu

UTILITIES MENU

The Utilities menu lets you show tagged content in the active QuarkXPress layout.

S H O W TA G G E D C O N T E N T, HIDE TA G G E D C O N T E N T (C O M M A N D)

Utilities menu

The Show Tagged Content command displays tagged content in the active
QuarkXPress layout with a particular color. You can specify this color in the
avenue.quark pane of the Preferences dialog box (QuarkXPress & Prefer-
ences & avenue.quark on Mac OS or Edit & Preferences & avenue.quark on
Windows).

Show Tagged Content command

CHOOSE RULE/POSITION DIALOG BOX

The Choose Rule/Position dialog box displays in two different situations:

• When two different tagging rules could be applied to a given range of text.

• When a new element could be inserted at a number of different places in the
active branch of the XML tree.

Chapter 4: Menus and Dialog Boxes

72

Choose Rule/Position Dialog Box

The Choose Rule/Position dialog box lets you determine which rule to use when text

matches more than one tagging rule. It also lets you choose a position for a tagged element

when more than one position is available.

The controls in this dialog box work as follows:

• The Element Type field lists the element types that can be applied to the
selected text. The options in this list are sorted as described in “Rule weighting.”

• The Element Type Description field displays the path of the element that
will be created if the element type selected in the Element Type field is
used. A number in brackets indicates the position of a child relative to its
parent; for example, “/whitePaper/body[2] “represents a new <body> ele-
ment that will be the second child element of <whitePaper>. A dot at the end
of a path indicates that if that path is selected, the text will be appended to the
end of the indicated element.

• The Choose Automatically button tags the selected text using the
avenue.quark automatic tagging algorithm. This algorithm works as if the
first two check boxes in the Tagging Rule/Position Options area
(QuarkXPress & Preferences & avenue.quark pane on Mac OS or Edit &
Preferences & avenue.quark pane on Windows) were checked and automati-
cally selects the top match in the Element Type field. After you click this
button, rule-based tagging then continues with these settings until the end
of the selected text is reached.

Chapter 4: Menus and Dialog Boxes

73

Choose Rule/Position Dialog Box

• The Stop button stops the tagging process without tagging the selected
text. All content tagged before this button is clicked remains in the XML
Workspace palette.

• The OK button tags the selected text with the element type listed in
the Element Type field, at the position indicated by the Element Type
Description field. Tagging then resumes.

RULE PRIORITIES

When the selected text can be tagged using more than one tagging rule,
avenue.quark displays the Choose Rule/Position dialog box (unless Always
use the first applicable tagging rule is checked in the avenue.quark pane of
the Preferences dialog box). The rules that can be applied are then sorted
according to their weight and displayed in the Element Type field.

Tagging rules are prioritized as follows, with items nearer the top of the list
having a higher priority than items nearer the bottom:

• A rule that targets a character style sheet, a color, and a type style

• A rule that targets a character style sheet, plus either a color or a type style

• A rule that targets a character style sheet only

• A rule that targets a color and a type style only

• A rule that targets either a color or a type style only

• A rule that targets a paragraph style sheet, a color, and a type style

• A rule that targets a paragraph style sheet plus either a color or a type style

• A rule that targets a paragraph style sheet only.

For example, say you have a paragraph style named “Body-P” and a character
style sheet named “Italic-C,” and you’re applying the “Italic-C” style sheet
to emphasized words in your “Body-P” paragraphs. You’d like to tag all your
paragraphs as <bodyText> elements, with the emphasized words in those para-
graphs tagged as <emphasized> elements.

When avenue.quark encounters an “Italic-C” word in a “Body-P” paragraph, two
rules can be applied: the rule that says text styled as “Body-P” should be tagged
as <bodyText>, and the rule that says text styled as “Italic-C” should be tagged
as <emphasized>. The second rule is given a higher priority, according to the
list above, and thus is listed first (and chosen automatically if you click
Choose Automatically). As a result, your XML looks something like this:

<bodyText>I want the <emphasized>other</emphasized> banana.</bodyText>

This example assumes that the DTD allows the <bodyText> element to contain
both PCDATA and <emphasized> elements.

Chapter 4: Menus and Dialog Boxes

74

Choose Rule/Position Dialog Box

The rule weighting algorithm is designed to make the Choose Automatically
button in the Choose Rule/Position dialog box work correctly in most tagging
situations. If this button does not give you the results you want, though, you
can still choose a rule manually in the Element Type field.

The following table shows rule weighting in a tabular form:

R U L E PA R A G R A P H C H A R A C T E R T Y P E

W E I G H T STYLE SHEET STYLE SHEET C O L O R STYLE

Highest • • •

• (• OR •)

•

• •

(• OR •)

• • •

• (• OR •)

Lowest •

Chapter 5: Tagging Rule Sets

75

Understanding Rule-Based Tagging

Chapter 5: Tagging Rule Sets

One of the most difficult parts of working with XML is getting content from its original

format into XML format. A QuarkXPress layout may be organized with style sheets

and other conventions, but how do you translate that kind of organization into XML?

Avenue.quark helps you automate this process. Given a QuarkXPress layout and a

DTD, avenue.quark lets you create a “tagging rule set,” which can automatically map

combinations of QuarkXPress style sheets, colors, and type styles to element types

in a DTD.

U N D E R S TANDING RULE-BASED TA G G I N G

A tagging rule set lets you associate QuarkXPress style sheets, and text styles with
elements in a DTD. You can use a tagging rule set to automate part of the process of
tagging a QuarkXPress layout. To use tagging rule sets in rule-based tagging, see
Chapter 6, “Tagging Content.”

W H AT IS A TAGGING RULE SET?

A tagging rule set is a named set of tagging rules that are all based on a single
DTD. Each tagging rule specifies which style sheets, colors, and text styles
should be mapped to their corresponding elements. Tagging rules let you
specify that when you use rule-based tagging, content that meets a specific set
of criteria should be tagged with a particular element name. For example, you
could set up a tagging rule indicating that each paragraph that uses the “Head-
line” paragraph style sheet should be tagged as a <headline> element.

You could add a rule to specify that italicized text in paragraphs that use the
“01 Title” style sheet should be tagged with <emphasis> tags, like this:

Chapter 5: Tagging Rule Sets

76

Understanding Rule-Based Tagging

Tagging rule sets let you nest elements within other elements.

Given the two tagging rules specified above, a paragraph that uses the “Title”
paragraph style sheet and contains italic text might be tagged as follows:

<title>What the Maid <emphasis>Really </emphasis>Saw</title>

In order for the selected element type to be used, all the criteria in the Rule
Setting area must be met. For example, the following tagging rule indicates
that only text that uses the “Author” paragraph style sheet and is red and is
bold should be tagged with the <author> element type:

Chapter 5: Tagging Rule Sets

77

Understanding Rule-Based Tagging

All tagging rule criteria must be met for a tag to be used.

If there is more than one kind of formatting you want mapped to a particular
element type, you can create additional rules for that element type. For exam-
ple, say you have two different paragraph style sheets for names; one style sheet
for the first name in a list, and another style sheet for the other names in the
list. (This is commonly done for spacing reasons.) You could simply create two
tagging rules for the <name> element type, one that maps the “First Name”
style sheet to <name> and one that maps the “Remaining Names” style
sheet to <name>. Avenue.quark would then tag paragraphs that met either
rule’s criteria as <name> elements.

In many workflows, only administrative personnel should create tagging
rule sets.

HOW RULE-BASED TEXT TA G G I N G W O R K S

When you use rule-based tagging on a box full of text, avenue.quark goes
through that text from beginning to end and tries to tag the text to match the
DTD. At any given point in this process, avenue.quark is looking ahead to see if
it can find text that matches a rule that fits the DTD. Text that cannot be tagged
according to any tagging rule is ignored.

Chapter 5: Tagging Rule Sets

78

Understanding Rule-Based Tagging

A recursive DTD is a DTD that allows an element to contain itself. For example,
if a DTD allows an <A> element to contain an <A> element (directly or
indirectly), then that DTD is recursive.

If you use rule-based tagging with a recursive DTD, you can create an “endless
loop” situation. To avoid such problems, create a subset of the DTD that is not
recursive, and use that subset DTD when tagging layouts with avenue.quark.
(Make sure, however, that layouts created with the subset DTD are still valid
according to the full DTD.)

WORKING WITH TAGGING RULE SETS

A tagging rule set lets you associate QuarkXPress style sheets, colors, and text styles
with elements in a DTD. You can use a tagging rule set to automate part of the process
of tagging a QuarkXPress layout. To use tagging rule sets in rule-based tagging, see
Chapter 6, “Tagging Content.”

C R E ATING A TAGGING RULE SET

A tagging rule set lets you specify how text should be tagged when you use
rule-based tagging. To create a tagging rule set:

1 Create or open the XML document for which you want to create a tagging
rule set.

2 Create or open a QuarkXPress project that contains all the style sheets and
colors you want to use in the tagging rule set.

3 Choose Edit & Tagging Rules. The Tagging Rules dialog box displays.

Chapter 5: Tagging Rule Sets

79

W orking with Tagging Rule Sets

Create a new tagging rule set from the Tagging Rules dialog box.

4 Click the New Set button to create a new tagging rule set. The Edit Tagging
Rules dialog box displays, and the DOCTYPE’s root element and file name
are listed in the title bar.

The Edit Tagging Rules dialog box lets you create and edit a tagging rule set.

5 Enter a name for the tagging rule set in the Name field.

Chapter 5: Tagging Rule Sets

80

W orking with Tagging Rule Sets

6 Select a bold element type in the list on the left. (If an element type’s name is
unavailable, that means the DTD does not allow it to be associated with rules.)
To expand a container element and display all the elements it contains, click
the > disclosure triangle (Mac OS) or the disclosure box (Windows) next to
that element. To view more of the DTD, scroll through the list.

7 To begin adding a new rule to the tagging rule set, click Add Rule. A blank rule
is added to the Rules list.

8 To configure the tagging rule to automatically tag text that uses a particular
style sheet, click Style Sheet and then choose a style sheet name from the
Style Sheet pop-up menu. If you want a consecutive series of paragraphs that
use the indicated paragraph style sheet to be inserted into separate elements,
check New tag for each paragraph; if you want a consecutive series of para-
graphs that use the indicated style sheet to be inserted into a single element,
leave this box unchecked. Style sheets displayed in italics are not present in
the active QuarkXPress layout.

In order for the New tag for each paragraph option to work, the DTD must
support multiple sequential occurrences of the selected element.

9 To configure the tagging rule to automatically tag text that uses a particular
font, click Font and then choose a font from the Font pop-up menu.

10 To configure the tagging rule to automatically tag text that uses a particular
font size, click Size and then choose a font size from the Size pop-up menu.

11 To configure the tagging rule to automatically tag text that uses a particular
color, click Color and then choose a color name from the Color pop-up
menu. Color names displayed in italics are not present in the active
QuarkXPress layout.

Tagging rule sets contain only the names of style sheets and colors. If you change
the name of a style sheet or color in the project, you must update the tagging
rule set as well.

12 To configure the tagging rule to automatically tag text that uses a particular
combination of type styles, click Type Style and then click the icons to indicate
which type styles should be tagged. A type style icon with a black background
indicates that text must use this type style to be tagged; a type style icon with a
white background indicates that text with this type style will not be tagged; and
a type style icon with a gray background indicates that this type style will not be
taken into account during rule-based tagging.

Remember that text is not tagged until you perform rule-based tagging on it.
To perform rule-based tagging, see Chapter 6, “Tagging Content.”

Chapter 5: Tagging Rule Sets

81

W orking with Tagging Rule Sets

13 To add a new rule for the selected element type, click Add Rule and then repeat
steps 8 through 10. To base a new rule on an existing rule, select the existing
rule in the Rules list; click Duplicate to create a copy of that rule; and then
reconfigure the duplicate rule.

14 To delete a rule for the selected element type, select the rule in the Rules list
and then click Delete.

15 To save your changes to the tagging rule set, click OK.

16 Click Save to close the Tagging Rules dialog box.

Element types for which rules have been created display italicized in the
DTD list.

If an element type occurs more than once in the DTD tree, creating a rule for
one occurrence applies that rule to all occurrences.

To create a tagging rule set that includes rules for style sheets from several
projects, create a new project, append all the style sheets from their vari-
ous projects (File & Append & Style Sheets tab), and then create your
tagging rules.

EDITING, DUPLICATING, AND DELETING TAGGING RULE SETS

The Tagging Rules dialog box (Edit menu) lets you edit, duplicate, and
delete tagging rule sets. Select a tagging rule set in the list and click one of
these buttons:

• Clicking Edit opens the tagging rule set so you can modify it.

• Clicking Duplicate creates a copy of the tagging rule set that you can
rename and modify.

• Clicking Delete removes the tagging rule set from the list.

Chapter 6: Tagging Content

82

Creating, Opening, and Saving XML Documents

Chapter 6: Tagging Content

XML lets you tag, or label, the content of layouts. Tagging lets you label the parts

of documents. This in turn enables you to use that tagged content in a wide variety

of ways, including on the World Wide Web.

Avenue.quark gives you a unique means of tagging text and pictures in QuarkXPress

documents. You can tag elements manually or use tagging rule sets to automate part

of the tagging process.

C R E ATING, OPENING, AND SAVING XML D O C U M E N T S

Avenue.quark lets you create and open XML documents from the File menu. You can
save XML documents using buttons on the XML Workspace palette.

C R E ATING AN XML D O C U M E N T

To create a new XML document:

1 Choose File & New & XML, or press C+Shift+X (Mac OS) or Ctrl+Shift+X
(Windows). The New XML dialog box displays.

The New XML dialog box lets you create a new XML document.

2 To base the new XML document on an XML template, select an item in the
Template list. To create a new XML document that is not based on a template,
click Import in the DOCTYPE area, select a DTD, and then choose a root

Chapter 6: Tagging Content

83

Creating, Opening, and Saving XML Documents

element from the Root Element pop-up menu. For information about XML
templates, see “Working with XML Templates” in this chapter.

3 If you are basing the new XML document on a template and you plan to use
rule-based tagging, choose a default tagging rule set from the Default Set
pop-up menu.

4 Click OK. The new XML document displays in a new XML Workspace palette.
Once you complete this step, the DTD and root element of the XML document
cannot be changed.

By default, a new XML document contains only those elements that are
mandatory at the root level according to the DTD, plus any mandatory children
of those elements. If the DTD requires one of a list of non-optional elements
(for example, (a | b | c)), avenue.quark uses the first element in the list
(here, a). If the DTD requires one of a list of elements, and one or more of
those elements is optional (for example, (a | b | c?)), avenue.quark leaves the
parent element empty.

Avenue.quark creates only valid XML documents (that is, documents that
adhere to their DOCTYPE).

If you want to create a new document based on an XML template file that’s not
in the QuarkXPress “Templates” folder, choose File & Open and open the XML
template file.

OPENING AN XML D O C U M E N T

Avenue.quark lets you open XML documents created by avenue.quark or any
other valid XML document that includes its DTD or references an available
DTD. To open an XML document in avenue.quark:

1 Choose File & Open (C+O on Mac OS, Ctrl+O on Windows).

2 Windows only: Choose XML (*.xml) from the Files of type pop-up menu.

3 Use the controls in the dialog box to locate the document you want to
open; then select the document in the list. Avenue.quark can open only
XML documents that have a file extension of “.xml”.

4 Click Open.

Chapter 6: Tagging Content

84

Creating, Opening, and Saving XML Documents

5 If the XML file was generated by avenue.quark, avenue.quark attempts to
open the QuarkXPress project that most recently contributed content to it.
If avenue.quark cannot find the QuarkXPress project, a dialog box displays
allowing you to open the XML file without the project or to cancel the
Open procedure.

If an “XML document error” dialog box displays, this means the project you
are opening contains an error. To help you easily locate the error, the dialog
box displays the name of the DTD containing the error and all its lines, with
the problem area highlighted. At the bottom, the dialog box lists the exact
location of the error within the DTD. If the DTD contains more than one
error, click Next to see the location of the second problem. To resolve errors,
click OK in the error dialog box and open the DTD in question to correct it.

6 If the QuarkXPress project is available, avenue.quark compares the content in
the project to the corresponding content in the XML document and notifies
you of any differences.

Avenue.quark supports the UTF-8 and UTF-16 (Unicode) encodings, and auto-
matically adds an encoding specification when you save an XML file. If an
XML file does not have an encoding specification, avenue.quark assumes its
encoding to be UTF-8. For information about encodings, see Appendix C,
“Understanding Encodings,” in Chapter 7, “Appendices.”

OPENING .XML AND .XMT FILES IN QUARKXPRESS (WINDOWS ONLY)

Although avenue.quark lets you create files with the suffixes “.xml” and “.xmt”,
it does not register these suffixes in the Windows registry. Because these suffixes
are not registered, double-clicking an “.xmt” or “.xml” file does not open that
file in QuarkXPress by default.

To open an XML file (a file that ends in “.xml”) with avenue.quark, launch
QuarkXPress with avenue.quark installed, choose File & Open, select the file,
and then click Open.

To open an avenue.quark XML template (a file that ends in “.xmt”) with
avenue.quark:

1 Put the XML template file in the “Templates” folder (in your QuarkXPress
application folder).

2 Launch QuarkXPress with avenue.quark installed.

3 Choose File & New & XML.

4 Select the XML template’s file name in the Template list and click Open.

Chapter 6: Tagging Content

85

Creating, Opening, and Saving XML Documents

REGISTERING THE .XML AND .XMT SUFFIXES (WINDOWS ONLY)

If you would like to register the “.xmt” file type with QuarkXPress in
Windows, do the following:

1 Open a folder window.

2 Choose View & Folder Options (Windows 98 or Windows 2000) View &

Options (Windows NT), or Tools & Folder Options (Windows XP).

3 Click the File Types tab to view registered file types.

4 Use the New Type button to create a new registered file type.

5 Enter “avenue.quark XML template” in the Description of type field.

6 Enter “xmt” in the Associated extension field.

7 Click New in the Actions area.

8 When the New Action dialog box displays, enter “Open” in the Action field.

9 Click Browse, locate your QuarkXPress application file, and then click Open.

You can use the same procedure for XML files (“.xml”). If a registered file type
already exists for XML files, just edit its Open action to point to the
QuarkXPress application file. See the Windows documentation for more specific
instructions.

S AVING AN XML D O C U M E N T

Buttons on the XML Workspace palette lets you save XML documents under
their current names or under a new name.

From left to right: the Save, Save As, and Revert to Saved buttons.

• Click the Save button to save the active XML document with its current name.

• Click the Save As button to save the active XML document with a new name.
The Save As dialog box displays; name the XML file; choose a type from the
Type pop-up menu; choose an encoding method from the Encoding pop-up
menu; check or uncheck Save XML as Standalone; and then click Save.

Chapter 6: Tagging Content

86

Creating, Opening, and Saving XML Documents

The Save as dialog box lets you name an XML file, specify whether to save the file as an XML

document or avenue.quark template, and specify an encoding method.

• Click the Revert to Saved button to revert to the last-saved version of the active
XML document.

When you save an XML document in avenue.quark, a number of things happen:

• If Save XML as Standalone is checked, avenue.quark adds a copy of the DTD to
the file’s internal subset, so the file can be opened and validated on computers
where the DTD is unavailable. (If Save XML as Standalone is unchecked,
the appropriate DTD must be available in order for avenue.quark to open
the XML file.)

• If Exclude avenue.quark processing instruction is unchecked, avenue.quark
adds several processing instructions to the file, indicating the name of the
QuarkXPress layout that most recently contributed content to the document
and the location of that content in the QuarkXPress layout.

• If the XML document contains an empty ID attribute for which a value is
required, a dialog box displays. At that point, you can complete the save
(resulting in an invalid XML document), or cancel the save and view the
empty attribute in the XML Workspace palette.

• If the XML document contains an ID attribute with the same value as another
ID attribute in the same document, a dialog box displays. At that point, you
can complete the saving process (resulting in an invalid XML document),

Chapter 6: Tagging Content

87

Creating, Opening, and Saving XML Documents

or cancel the saving process and view the duplicate attribute in the XML
Workspace palette.

• If the XML document contains an empty IDREF attribute for which a value is
required, a dialog box displays. At that point, you can complete the saving
process (resulting in an invalid XML document), or cancel the saving process
and view the empty attribute in the XML Workspace palette.

• If the XML document contains an IDREF attribute with a value that does not
match the value of any ID attribute in the active XML document, a dialog
box displays. If the IDREF attribute value refers to an ID attribute value in an
XML document referred to by the active XML document, you can save the
same. If not, you can cancel the saving process and view the problematic
IDREF attribute in the XML Workspace palette.

• If the XML document contains empty CDATA attributes for which a value is
required, an underscore (_) is inserted in those attributes.

WORKING WITH XML T E M P L AT E S

An XML template is an avenue.quark XML document that contains a DTD, a root
element specification, and an optional default tagging rule set. An XML template may
also contain a “starter” set of elements, attributes, comments, processing instructions,
PCDATA blocks, and content. The purpose of XML templates is to save users from hav-
ing to repeat the same setup steps over and over again when creating a series of
XML documents that are all based on the same DTD, root element, and tagging rule
set.

To be available in avenue.quark, XML templates must be stored in the “Templates”
folder, which is in the same folder as the QuarkXPress application. XML templates
must have a file name suffix of “.xmt”, even on Mac OS.

C R E ATING AN XML T E M P L AT E

To create a new XML template:

1 Choose File & New & XML, or press C+Shift+X (Mac OS) or Ctrl+Shift+X
(Windows). The New XML dialog box displays.

Chapter 6: Tagging Content

88

W orking with XML Templates

2 If you want to base the template on another template, select that template’s
name in the Template list and then go to step 4.

The New XML dialog box lets you create new XML templates.

3 If you want to create the template from scratch, select Custom in the Template
list; click Import in the DOCTYPE area and select a DTD file; then choose a root
element from the Root Element pop-up menu.

4 If you are basing the new template on an existing template and you plan to
use rule-based tagging, choose a default tagging rule set from the Default Set
pop-up menu.

5 Click OK. The new XML document displays in a new XML Workspace palette.

6 Add any elements, attributes, comments, processing instructions, PCDATA
blocks, or content that you want the template to contain.

7 Click the Save As button. The Save as dialog box displays.

Chapter 6: Tagging Content

89

W orking with XML Templates

The Save as dialog box lets you name an XML file, specify whether to save the the file as

an XML document or avenue.quark template, and specify an encoding method for the file.

8 Enter a name for the file in the Save Current XML as field. Keep in mind that
XML templates must have a file name that ends in “.xmt”, even on Mac OS.

9 Choose avenue.quark Template from the Type pop-up menu.

10 Choose an encoding method from the Encoding pop-up menu.

11 If you want the template to be available in the New XML dialog box, navigate
to the “Templates” folder inside your QuarkXPress folder. (Templates that are not
stored in the “Templates” folder can be opened by choosing File & Open.)

12 Click Save.

Templates are always saved as stand-alone documents because they must
contain a DTD.

Chapter 6: Tagging Content

90

W orking with XML Document Content

WORKING WITH XML D O C U M E N T C O N T E N T

The XML Workspace palette’s hierarchical XML Tree list makes it easy for you to
view and work with the content of XML documents. A handy context menu makes it
easy for you to insert, delete, and replace elements, comments, PCDATA blocks, and
processing instructions.

INSERTING OR REPLACING AN ELEMENT, COMMENT, PCDATA BLOCK,

OR PROCESSING INSTRUCTION

You can insert a new element, comment, PCDATA block, or processing instruc-
tion above, below, or as a child of the item selected in the XML Tree list
(XML Workspace palette). You can also replace the selected item with a differ-
ent item if the DTD permits it. To insert or replace an item in the active XML
document:

1 In the XML Workspace palette, select an item in the XML Tree list.

2 Control+click (Mac OS) or right-click (Windows) the item to display the
XML Tree context menu, and then choose Insert Child, Insert Sibling
Before, Insert Sibling After, or Replace. A submenu displays.

The submenu for the Insert Child, Insert Sibling Before, Insert Sibling After, and Replace

commands lets you choose what kind of element to insert or substitute.

3 If you want to insert or substitute an element, comment, processing instruction,
or PCDATA block without a preview, simply choose it from the submenu.

4 If you would like to see a preview before you insert or replace, choose Insert
with Preview. The Insert Child, Insert Sibling Before, or Insert Sibling After
Preview dialog box displays.

Chapter 6: Tagging Content

91

W orking with XML Document Content

Insert Sibling Before dialog box.

The Items list displays a list of items that may be inserted or substituted. The
XML Tree Preview list shows the selected item and any of its mandatory
children (in black), in the context of the XML tree (in gray); you can think of it
as a preview of how the document will look after the change. If any elements
will need to be deleted in the process, they display in red struck-through text.
Click OK to complete the insertion or replacement, or Cancel to stop it.

Some elements have mandatory children. If you insert such an element, its
mandatory children must also be inserted. Clicking an element’s > disclosure
triangles (Mac OS) or disclosure box (Windows) displays any child elements
that must also be inserted along with that element. Clicking this icon does not
display any optional children an element might have.

If an inserted element requires one of a list of non-optional elements (for exam-
ple, (a | b | c)), avenue.quark uses the first element in the list (here, a). If the ele-
ment requires one of a list of elements, and one or more of those elements is
optional (for example, (a | b | c?)), avenue.quark leaves the element empty.

If the element you want is unavailable, it means the DTD does not permit new
elements of that type to be inserted in this position.

What is a PCDATA block? A PCDATA block is an avenue.quark construction
that lets you divide the text in an element into separate parts. PCDATA
blocks are visible only in avenue.quark; in the exported XML, consecutive
PCDATA blocks are merged.

Chapter 6: Tagging Content

92

W orking with XML Document Content

DELETING AN ELEMENT, COMMENT, PCDATA BLOCK, OR

PROCESSING INSTRUCTION

To delete an element, comment, PCDATA block, or processing instruction:

1 In the XML Workspace palette, select the item you want to delete in the
XML Tree list.

2 Control+click (Mac OS) or right-click (Windows) the item to display the XML
Tree pop-up menu, and then choose Delete. The Delete dialog box displays.

Delete dialog box.

If the Delete menu item is unavailable, it means the DTD does not permit the
deletion of the element you’ve selected.

The Items list displays the item being deleted. The XML Tree Preview list shows
what the XML tree will look like after the deletion; items that will be deleted are
indicated by red struck-through text.

3 Click OK to complete the deletion, or Cancel to stop it.

Chapter 6: Tagging Content

93

Tagging Text

TAGGING TEXT

When you use avenue.quark to tag content, you must use a DTD; see “Working
With DTDs” in Chapter 1, “Avenue.quark Basics”. Tagging text is the process of
associating that text with element types in the appropriate DTD.

There are several ways to tag text in avenue.quark. You can tag text manually,
automate tagging with a tagging rule set, or enter content manually.

TAGGING TEXT M A N U A L LY

Use manual text tagging when you want precise control over exactly which text
goes into which elements. To manually tag text from the active QuarkXPress
layout and copy it into the active XML document:

1 Scroll through the QuarkXPress layout to the page containing the text you
want to tag, and then select that text using the Content tool E.

2 In the XML Workspace palette, scroll through the XML Tree list until you can
see the element or attribute with which you want to tag the selected text. (If you
need to create that element or attribute, see “Working with XML Document
Content” in this chapter.)

Only attributes specified as CDATA attributes can be used to tag text. Fixed and
empty attributes cannot be used to tag text.

3 Click and drag the selected text to the element or attribute name in the XML
Tree list. The text is copied into the element or attribute. If the element or
attribute already contains text, the text will be replaced.

You can only drag text to elements or attributes in the XML Workspace palette
when the QuarkXPress Drag and Drop Text feature is on in the Preferences
dialog box Interactive pane (QuarkXPress & Preferences on Mac OS or Edit
& Preferences on Windows).

Although checking or unchecking Drag and Drop Text affects your ability to
drag text onto elements and attributes in the XML Workspace palette, the
avenue.quark drag-and-drop feature is not the same as the QuarkXPress Drag
and Drop Text feature.

4 To verify that the content has been properly tagged, select the element in the
XML Tree list; the text contained by the element or attribute displays in
the Content field.

If you drag text to a N M TOKENS or IDREFS attribute, spaces in that text
will be interpreted as delimiters between items in a list of N M TOKEN or
IDREF values.

Chapter 6: Tagging Content

94

Tagging Text

When you change text on a master page, it is considered a local change, so
the change is not reflected on the layout page.

Spell checking a layout may change the positioning of XML markers in the
text. This, in turn, can result in incorrectly tagged content. To avoid this
problem, check spelling before you begin the tagging process.

TAGGING TEXT WITH RULE-BASED TA G G I N G

Rule-based tagging lets you automate part of the process of tagging text and
pictures. To make use of rule-based tagging, you create a tagging rule set
(see Chapter 5, “Tagging Rule Sets”), then use that tagging rule set to automate
part of the tagging process.

To use rule-based tagging to tag text from the active QuarkXPress layout into the
active XML document:

1 In the XML Workspace palette, choose a tagging rule set from the Tagging
Rule Set pop-up menu.

2 Scroll through the XML Tree list until you can see the element where you want
to begin rule-based tagging. For rule-based tagging to work, there must be at
least one rule for this element or its children in the selected tagging rule set.

3 Select a range of text using the Content tool E or a text box using the
Item tool e.

4 Press C (Mac OS) or Ctrl (Windows), then click and drag the selected text or text
box to the element name in the XML Tree list. The text is copied into the XML
document according to the rules in the selected tagging rule set. Avenue.quark
adds new elements to the XML document as necessary to accommodate the
tagged content. If an ambiguous tagging situation arises, avenue.quark displays
a dialog box, asking you what you want to do.

5 To verify that the content has been properly tagged, select each element in the
XML Tree list; the text contained by the element displays in the Content field.

6 To verify that avenue.quark has tagged all the text you want it to tag, choose
Show Tagged Content from the Utilities menu. Tagged text and pictures dis-
play with the colors indicated in the avenue.quark pane of the Preferences
dialog box (QuarkXPress & Preferences & avenue.quark on Mac OS or Edit
& Preferences & avenue.quark on Windows).

Chapter 6: Tagging Content

95

Tagging Text

It can take a considerable amount of time to process a long QuarkXPress layout
with rule-based tagging, especially if the DTD (Document Type Definition) is
deeply nested. A progress bar displays while the tagging process executes; as
long as you see this progress bar, tagging is still underway.

If an “Out of memory –108” alert displays while you are tagging a layout, quit
QuarkXPress immediately without saving the active XML document. (If you
save the active XML document at this point, it may be saved in an invalid form).

If you receive an “Out of memory –108” alert, and you are using Mac OS,
select the QuarkXPress application icon in the Finder. Choose File & Get
Info; increase the memory allocation in the Preferred Size field. Relaunch
QuarkXPress and try the tagging operation again.

Text in symbol fonts such as Zapf Dingbats and Wingdings is encoded in the
same way as text in standard fonts such as Arial and Helvetica. This can lead to
unexpected results. Therefore, we recommend that you avoid tagging text that
uses a symbol font.

Spell checking a layout may change the positioning of XML markers in the
text. This, in turn, can result in incorrectly tagged content. To avoid this
problem, check spelling before you begin the tagging process.

When you use avenue.quark to tag the content of a QuarkXPress layout as XML,
avenue.quark stores information in the XML document indicating which con-
tent in the QuarkXPress layout has been tagged. If you make changes to the
QuarkXPress layout while the XML document is closed, avenue.quark can’t
ensure that the XML content will match its corresponding QuarkXPress con-
tent. To keep an XML document and a QuarkXPress layout synchronized,
always save the QuarkXPress project before you save the XML document. If
you use the Revert to Saved feature with one of the files, use it with both of
them.

TAGGING SELECTED TEXT

1 Select the text.

2 Click and begin to drag the selected text to the XML Workspace palette.

3 Press C (Mac OS) or Ctrl (Windows).

4 Finish dragging the text to the target element or attribute, and then release
the mouse button.

EDITING TAGGED TEXT

Once you have tagged text in a QuarkXPress layout, you can edit that text in
the QuarkXPress layout and it will automatically be updated in the XML

Chapter 6: Tagging Content

96

Tagging Text

Workspace palette. If the XML document is not open at the time, the text
is updated the next time both files are open.

Automatic content updating works only with elements; not with attributes.

If you want to break the link between a QuarkXPress layout and an element in
the active QuarkXPress layout, select the element or attribute in the XML
Tree list and then click the Break Dynamic Link button .

TAGGING PICTURES

To tag pictures from the active QuarkXPress layout and copy their file names into the
active XML document:

1 Scroll through the QuarkXPress layout to the page containing the picture you
want to tag, and then select its picture box.

2 In the XML Workspace palette, scroll through the XML Tree list until you can
see the element or attribute with which you want to tag the selected picture.
To create an element or attribute, see “Working with XML Document Content”
in this chapter.

Only attributes specified as CDATA attributes may be used to tag pictures.
Fixed and empty attributes cannot be used to tag pictures.

3 Press C (Mac OS) or Ctrl (Windows); then click and drag the selected picture to
the element or attribute name in the XML Tree list. The name of the picture is
copied into the selected element or attribute.

If the target element or attribute already contains a name, the new name always
replaces the old one.

If a picture has been pasted into a picture box, rather than imported by choosing
File & Get Picture, it cannot currently be tagged by avenue.quark.

M A N U A L LY ENTERING NEW CONTENT

In addition to copying content from a QuarkXPress layout, avenue.quark lets you add
content by entering it directly into the XML document. To add new content to an
empty element, attribute, or comment in the active XML document:

1 In the XML Tree list, select the element, attribute, or comment to which you
want to add content.

Chapter 6: Tagging Content

97

Manually Entering New Content

Attributes may contain manually-entered content only if they are specified
as CDATA attributes. Fixed and empty attributes cannot contain manually
entered content.

2 Enter the content in the Content field. You can also paste content from the
clipboard into the Content field. Note that such text will lose any formatting
it might have, and will be pasted as plain ASCII text.

3 To indicate that you’re finished editing the selected element, press the Tab key.

You can manually add content only to elements that do not contain content
from a QuarkXPress layout. If an element contains content from a
QuarkXPress layout, edit that content in the QuarkXPress layout; the copy
of it in the XML document will be automatically updated.

PREVIEWING TAGGED TEXT

Once your content has been tagged, you can preview how it will look when saved as
XML. To preview the XML document displayed in the active XML Workspace palette,
click the Preview XML button; the Preview XML dialog box displays.

The Preview XML dialog box lets you preview the XML that will be created when you save

the active XML document.

You can copy text from the Preview XML dialog box, but you cannot edit
or delete it.

Although upper-ASCII characters (characters above ASCII 127) display unaltered
in the Preview XML dialog box, such characters are converted to the appropriate
codes at export, depending on the encoding method you choose in the Save As
dialog box.

Appendices

98

Appendix A: XML Quick Reference

Appendices

APPENDIX A: XML QUICK REFERENCE

This section provides a review of XML features and conventions for quick reference.

THE PA RTS OF AN XML D O C U M E N T

An XML document consists of the following parts, in this order:

1 An XML declaration (optional, but highly recommended).

2 A DOCTYPE declaration and DTD (optional), including comments, process-
ing instructions, and entity references.

3 XML elements (and their attributes), comments, processing instructions,
and entity references.

X M L D E C L A R ATION

The XML declaration, if included, must be the first line in a XML document.
It indicates the version of XML that the document adheres to, and whether
the file includes any references to other files. For example:

<?xml version="1.0" standalone="no"?>

D O C T Y P E D E C L A R ATION (INCLUDING DTD)

The DOCTYPE declaration — which specifies the document’s DTD — goes after
the XML declaration and before the opening tag of the root element. There are
two potential parts to any DTD: The external subset and the internal subset. If a
document has only an external subset, it looks like this:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE rootElement SYSTEM "URL of DTD">

<rootElement>Content goes here.</rootElement>

If a document has only an internal subset, it looks like this:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE rootELement [

<!-- DTD goes here -->

]>

<rootElement>Content goes here.</rootElement>

Appendices

99

Appendix A: XML Quick Reference

If a document has both an external subset and an internal subset, it looks
like this:

<?xml version="1.0" standalone="no"?>

<!-- External DTD -->

<!DOCTYPE rootElement SYSTEM "URL of DTD" [

<!-- Internal DTD goes here -->

]>

<rootElement>Content goes here.</rootElement>

E L E M E N T S

An element consists of an opening tag (<tagName>), some content, and a
closing tag (</tagName>):

<tagName>Content goes here.</tagName>

An exception is the empty tag, which may be a single tag with a forward slash
before the closing >:

<emptyTag/>

All elements must be properly nested, meaning that the most recently
opened tag must be closed before you can close any other tags. For example,
the following line would be illegal in an XML document because it does not
close <tag2> before closing <tag1>:

<tag1><tag2>Content goes here.</tag1></tag2>

Each XML document must have a root element that contains all the other
elements in the document.

Element names are case-sensitive. Each element name must begin with a letter
or an underscore (_); subsequent characters in the name can be letters, under-
scores, numbers, hyphens and periods, but not spaces or tabs.

ATTRIBUTES

Elements may have attributes as part of their opening tag (or, for empty
elements, as part of the single opening/closing tag). An attribute consists
of an attribute name followed by an equals sign and then an attribute
value in quotation marks. For example:

<elementName attributeName="attributeValue">Content</elementName>

<elementName attributeName="attributeValue"/>

C O M M E N T S

A comment consists of text between a <!-- and a -->. The content of comments
should be ignored by XML processors. Comments cannot contain “--” and
they cannot contain other comments.

Appendices

100

Appendix A: XML Quick Reference

<!-- This is a comment. Characters such as < and > are legal here. -->

PROCESSING INSTRUCTIONS

A processing instruction consists of text between a <? and a ?>. Processing
instructions are read only by XML processors and cannot contain content.
The syntax for processing instructions is as follows:

<?target instruction?>

CHA R A C T E R R E F E R E N C E S

A character reference is way of representing Unicode characters in parsed
character data. The syntax for character references is as follows:

&#UnicodeValueOfCharacter;

ENTITY R E F E R E N C E S

An entity reference is a name that represents a specific character, text string,
or file. Entity references in an XML document are always between an amper-
sand (&) and semicolon (;). For example, > represents a greater-than sign (<),
which cannot be included in XML content except as an entity reference.

The meaning of each entity reference used in an XML document must be
defined in the document’s DTD, with the exception of the following predefined
character entity references, which can be used without being defined:

C H A R A C T E R ENTITY R E F E R E N C E

< <

> >

& &

" "

' '

Appendices

101

Appendix A: XML Quick Reference

WELL-FORMED XML

To be well-formed, an XML document must follow these rules:

• The first line should be an XML declaration.

• There must be an end tag for every start tag (except for single empty tags).

• Single empty tags must end with /> .

• There must be a root element that contains all other elements.

• All elements must be properly nested, meaning that the most recently opened
tag must be closed before you can close any other tags.

• All attribute values must be enclosed in quotation marks ("").

• All tags must begin with < and all entities must begin with &.

• The only entity references that may be used — unless the document has
a DTD — are the predefined character entity references listed above.

VALID XML

A valid XML document is an XML document that is well-formed and adheres
to the DTD specified by its DOCTYPE declaration.

APPENDIX B: DTD QUICK REFERENCE

This section provides a review of DTD features and conventions for
quick reference.

THE PA RTS OF A D T D

A DTD may be composed of the following parts, in no particular order:

• Element type declarations

• Attribute declarations

• Comments

• Entity reference declarations

• Notation declarations

• Processing instructions

• Parsed entity references

• Conditional sections

Appendices

102

Appendix B: DTD Quick Reference

E L E M E N T TYPE DECLARATIONS

The syntax for an element type definition is as follows:

<!ELEMENT elementName (elementContent)>

Element names are case-sensitive. Each element name must begin with a letter
or an underscore (_); subsequent characters in the name can be letters, under-
scores, numbers, hyphens, and periods, but not spaces or tabs.

Element content may consist of parsed character data (that is, text and entity
references, expressed as #PCDATA) and/or other element types. The follow-
ing symbols can be inserted after any element name or closing parenthesis in
the element content definition:

S Y M B O L M E A N I N G

None Exactly one

+ One or more

* Zero or more

? Zero or one

To require one element to be followed by another, use a comma:

<!ELEMENT elementName (element1, element2)>

To indicate that content can include one element or another, use a |:

<!ELEMENT elementName (element1 | element2)>

To allow an element to contain a combination of specific elements and
#PCDATA in any order, use the following syntax:

<!ELEMENT elementName (#PCDATA | element1 | element2)*>

To allow an element to contain any combination of elements and #PCDATA
in any order, use the following syntax (note omission of parentheses):

<!ELEMENT elementName ANY>

To define an empty element, use the following syntax (note omission
of parentheses):

<!ELEMENT elementName EMPTY>

Appendices

103

Appendix B: DTD Quick Reference

ATTRIBUTE DECLARATIONS

The syntax for a single attribute definition is as follows:

<!ATTLIST elementName attributeName attributeType defaultValue>

Attribute names are case-sensitive. Each attribute name must begin with a letter
or an underscore (_); subsequent characters in the name can be letters, under-
scores, numbers, hyphens, and periods, but not spaces or tabs.

Attribute types may be as follows:

ATTRIBUTE T Y P E M E A N I N G

CDATA Character data and entity references, between
quotation marks (“”)

ID Must contain a unique name* for each element
of this type

IDREF The unique ID name* of an element in the XML
file

ENTITY An unparsed external entity reference name*
defined in the DTD

ENTITIES A list of ENTITY names, separated by spaces

Enumerated A list of names*, separated by | characters, in
parentheses

N M TOKEN A value containing only NameChar characters**

N M TOKENS A list of N M TOKEN values, separated by spaces

NOTATION The name of a notation defined in the DTD

Enumerated NOTATION A list of NOTATION values, separated by | charac-
ters, in parentheses

*Names must begin with a letter or an underscore (_); subsequent characters in
the name can be letters, underscores, numbers, hyphens, and periods, but not
spaces or tabs.

**NameChar characters include letters, underscores, numbers, hyphens, or periods,
but not spaces or tabs.

Default attribute values may be as follows:

ATTRIBUTE T Y P E M E A N I N G

#REQUIRED This attribute must be specified by the ele-
ment

#IMPLIED This attribute may or may not be used

#FIXED value If not specified, this attribute is assumed to be
value; if specified, it must be value

defaultValue If not specified, this attribute is assumed to be defaultValue

Appendices

104

Appendix B: DTD Quick Reference

C O M M E N T S

A comment consists of text between a <!-- and a -->. The content of comments
should be ignored by XML processors. Comments cannot contain “--” and
they cannot contain other comments.

<!-- This is a comment. Characters such as < and > are legal here. -->

CHA R A C T E R R E F E R E N C E S

A character reference is way of representing Unicode characters in parsed
character data. The syntax for character references is as follows:

&#UnicodeValueOfCharacter;

ENTITY REFERENCE DECLARATIONS

There are five types of entities. The syntax for their declaration is as follows:

TYPE SYNTAX

Parsed internal <!ENTITY entityName "text of entity">

Parsed external <!ENTITY entityName SYSTEM "URL of file">

— OR —
<!ENTITY entityName PUBLIC "name of file" "URL

of file">

Unparsed external <!ENTITY entityName SYSTEM "URL of file"

NDATA notationName> — OR —
<!ENTITY entityName PUBLIC "name of file" "URL

of file NDATA notationName>

Internal parameter <!ENTITY %entityName "text of entity">

External parameter <!ENTITY %entityName SYSTEM "URL of file"> —
OR —
<!ENTITY %entityName PUBLIC "name of file"

"URL of file">

The syntax for using the first three types of entity reference is &entityName;.
The syntax for using a parameter entity is %entityName;. Parameter entity refer-
ences are always parsed and can be used only in a DTD.

N O TATION DECLARATIONS

Notation declarations should be specified in one of the two following ways:

<!NOTATION notationName SYSTEM "External Identifier">

<!NOTATION notationName PUBLIC "External Identifier Name" "Backup URL">

The external identifier should be the name of an application that can process
or display files to which this notation is applied. For example:

<!NOTATION gif SYSTEM "Microsoft Internet Explorer">

Appendices

105

Appendix B: DTD Quick Reference

Note that it is up to the application that processes the XML to pass the URL to
the application indicated by the external identifier.

PROCESSING INSTRUCTIONS

A processing instruction consists of text between a <? and a ?>. Processing
instructions are read only by XML processors and cannot contain content.
The syntax for processing instructions is as follows:

<?target instruction?>

APPENDIX C: UNDERSTANDING ENCODINGS

Let’s say you’ve just exported an XML file from avenue.quark, and when you look
at it in your text editor, you see a lowercase “a” with an accent where you thought
you had a trademark symbol. In fact, a lot of your special symbols are incorrect.
What happened?

Your text editor probably doesn’t support the encoding used by your XML file.
This section explains the topic in detail.

W H AT IS AN ENCODING?

An encoding is specification that maps a set of characters to corresponding
numeric values. For example, the ASCII encoding maps the character “M” to
the numeric value 77, “N” to 78, “O” to 79, and so forth.

A text file’s encoding allows a program to translate the text file into the proper
characters on the screen. Without the encoding, a text file is just a stream of
numbers. If you view a text file using the wrong encoding, you’re likely to see
rows of strange characters, because the application opening the file will map
the numeric values to the wrong set of characters.

All of the following are encodings:

• ASCII

• MacRoman (used by Mac OS)

• Windows Latin 1 (used by Windows)

• UTF-8

• UTF-16 (Unicode)

• Shift-JIS

Avenue.quark supports the UTF-8 and UTF-16 encodings.

Appendices

106

Appendix C: Understanding Encodings

L O W E R AND UPPER CHARACTER RANGES

You can divide most encodings into two parts: the first 128 characters (the lower
range), and all the characters after that (the upper range).

Generally speaking, the lower range of most encodings is mapped to the
same characters. This range includes the characters a–z, A–Z, 0–9, a handful
of punctuation characters, plus some special control characters.

Characters in the upper range can create problems. For example, MacRoman
and Windows Latin 1 have lower ranges that are nearly identical. So if you take
a file that uses only characters from this range and transfer that file from Mac OS
to Windows, it looks fine, but if the file contains upper-range characters, you
might get some strange results, because many of the upper-range values are
mapped to different characters on each platform. For example, a character that
shows up as a trademark symbol in Mac OS might show up as a superscript
lowercase “a” in Windows.

When you get such incorrect character displays, it’s either because the
application displaying the text doesn’t know the encoding of that text, or
because the application isn’t capable of correctly displaying text with the
file’s specified encoding.

SPECIFYING ENCODINGS

You can indicate the encoding of an XML file by including an encoding
specification in the file’s XML declaration, like this:

<?xml version="1.0" standalone="yes" encoding="Shift_JIS"?>

If an XML file doesn’t contain an encoding specification, avenue.quark assumes
that the file uses the UTF-8 encoding.

When you save an XML file from avenue.quark, you specify the document’s
encoding using the Encoding pop-up menu, and avenue.quark automatically
generates the appropriate encoding attribute.

ENCODINGS AND DTDS

XML lets you specify the encoding of an XML file. However, it doesn’t provide
a way to specify the encoding of a free-standing DTD file.

Fortunately, avenue.quark does. To specify the encoding of a free-standing DTD,
just add the following text as the first line in the file:

<? xml encoding="encodingName" ?>

For example, to specify a free-standing DTD as a UTF-16 DTD, just add the
following line to the beginning of the file:

<? xml encoding="UTF-16" ?>

Appendices

107

Appendix D: Sample avenue.quark Scenario

APPENDIX D: SAMPLE AVENUE.QUARK SCENARIO

Avenue.quark lets you use a DTD to extract structured content from QuarkXPress
layouts and store that content in the file system or in a database. The following sec-
tion describes how the process works using a sample situation.

THE SITUATION

Let’s say your organization has created a large number of articles in QuarkXPress
format, and you’d like to export the content in XML format and store it in a
database so you can make it available to your customers on the Web. The articles
all use the same QuarkXPress template and style sheets.

1 Create or choose a DTD.

Before you can extract the articles’ content in a structured format, you must
have a structure to contain that content. The DTD provides that structure.
There are two ways to acquire a DTD for use with avenue.quark:

• Choose an existing XML DTD. There are several industry-standard XML DTDs
available as of this writing, and as XML is more widely adopted, more will
become available. If you choose to do this, give careful consideration to the DTD
you want to use; an inappropriate DTD can make life difficult for the people
who need to use it.

• Develop your own DTD. Read “Working With DTDs” in this chapter, then care-
fully analyze the parts that go into an article and develop a corresponding DTD.
This process can be time-consuming, but it will pay off if the resulting DTD is
appropriate to its use. Generally, it’s an editorial or administrative group that
selects a DTD.

2 Create an XML document.

Create a new XML document in avenue.quark and specify the DTD you chose
in Step 1. Any mandatory elements in the DTD are automatically inserted in
the XML document.

Appendices

108

Appendix D: Sample avenue.quark Scenario

XML W orkspace palette for a new XML document

3 Create a tagging rule set.

One of the unique features of avenue.quark is rule-based tagging. In rule-based
tagging, you create a set of tagging rules that tell avenue.quark, for example, that
a paragraph that uses the “Headline” style sheet should usually be tagged as a
<Title>. You can also use tagging rule sets to specify how particular character
style sheets, text colors, and local formatting styles should be tagged. (To create
tagging rule sets, see Chapter 5, “Tagging Rule Sets.”)

4 Save the XML document as a template.

Save the XML document as a template named “article.xmt.” The template
contains the technical document DTD and the tagging rule set you created in
Step 3. You can use this template to create as many XML files as you want, on
the same computer or on several computers.

5 Display the QuarkXPress layout you want to tag.

6 Create a new XML document based on the XML template.

When you create a new avenue.quark XML document, the first thing you must
do is choose a template from the Template list; the new XML document will be
based on this template. For this example, use the “article.xmt” from Step 4.

Appendices

109

Appendix D: Sample avenue.quark Scenario

This article.xmt template makes it easy to tag a QuarkXPress layout.

7 Perform rule-based tagging.

To perform rule-based tagging, C+drag (Mac OS) or Ctrl+drag (Windows) the
box containing the article to the <body> element in the XML Tree list.
Avenue.quark automatically tags the layout using the rules in the tagging
rule set.

Appendices

110

Appendix D: Sample avenue.quark Scenario

To use rule-based tagging, C+drag (Mac OS) or Ctrl+drag (Windows) the box to the

appropriate element in the XML Tree list. Avenue.quark uses the tagging rule set to tag as

much of the content as it can.

8 Perform any necessary manual tagging.

Some of your layouts may be ready after rule-based tagging has been completed.
Others may have additional content that needs to be tagged manually, or occur-
rences of content that could be tagged in more than one way. To resolve such
situations, drag the content in question onto the appropriate element in the
XML Workspace palette. (You can only drag text to elements or attributes in
the XML Workspace palette when the QuarkXPress Drag and Drop Text fea-
ture is on [QuarkXPress & Preferences & Interactive pane on Mac OS or
Edit & Preferences & Interactive pane on Windows].)

9 Use your structured content on the Web and elsewhere.

Once your content is in XML format, you can use a variety of tools to publish
it on the Web. For example, you can serve it as straight XML and view it using
a newer Web browser such as Microsoft® Internet Explorer 5.0. XML-tagged
content can also be used in a wide variety of other ways, for everything from
electronic information exchange to the generation of printed documents.

Chapter #: Chapter Title

111

Name of Section

	A Guide to avenue.quark 6.0
	Chapter 1: Installing and Cu... �
	Minimum System Requirements
	Installation Instructions
	Customizing avenue.quark

	Chapter 2: Avenue.quark Basics �
	Introduction to XML
	Understanding XML
	Working with XML
	Working with DTDs
	Industry-Standard DTDs

	Chapter 3: XML Workspace Pal... �
	XML Workspace Palette

	Chapter 4: Menus and Dialog ... �
	Preference Settings
	Edit Menu
	Utilities Menu
	Choose Rule/Position Dialog Box

	Chapter 5: Tagging Rule Sets �
	Understanding Rule-Based Tag...
	Working with Tagging Rule Sets

	Chapter 6: Tagging Content �
	Creating, Opening, and Savin...
	Working with XML Templates
	Working with XML Document Co...
	Tagging Text
	Tagging Pictures
	Manually Entering New Content
	Previewing Tagged Text

	Appendices �
	Appendix A: XML Quick Reference
	Appendix B: DTD Quick Reference
	Appendix C: Understanding En...
	Appendix D: Sample avenue.qu...

