
.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

1 of 23 4/6/2004 4:52 PM

Page Options

 MSDN Home > MSDN Library > Component Development > COM+ (Component Services) >

.NET Enterprise Services Performance
Richard Turner, Program Manager, XML Enterprise Services
Larry Buerk, Program Manager, XML Enterprise Services
Dave Driver, Software Design Engineer, XML Enterprise Services

Microsoft Corporation

March 2004

Applies to:
 COM+ components
 Microsoft .NET Enterprise Services

Summary: See the performance of native COM+ and .NET Enterprise Services components when applied to different
activation and calling patterns. Get guidelines to make .NET Enterprise Services components execute just as quickly as C++
COM+ components, and get key recommendations to help you create high-performance .NET Enterprise Service
components. (45 printed pages)

Download the associated EnterpriseServicesPerf.exe code sample.

Contents

Introduction
Why Migrate to Managed Code?
How Much Change to My Code Will Be Required?
Porting COM+ Components to .NET Enterprise Services
.NET Enterprise Services vs. COM+ Performance
Test Results and Analysis
Conclusion
Appendix 1: Performance Recommendations
Appendix 2: "Indigo" and the Future of .NET
Appendix 3: Effect of Distributed Transactions on Performance
Appendix 4: Further Reading
Appendix 5: Performance Test Source Code
Appendix 6: Test Results

Introduction

Developers who consider moving their COM+ code from "native" Visual C++® or Visual Basic® 6 to managed .NET
Enterprise Services components sometimes raise concerns such as:

Why should I switch to managed code?

How much change will be required to my code?

How will my Enterprise Services components perform?

What is the future roadmap for COM+ and .NET Enterprise Services?

This paper discusses the points above, and particularly focuses on the performance question. Resources listed in Appendix 4:
Further Reading discuss these subjects in more detail.

This document is targeted at developers and architects who have developed COM+ components and are considering
migrating their code to .NET Enterprise Services.

Why Migrate to Managed Code?

There are many reasons for developers to develop their code in .NET. Some of the benefits are:

Increased Developer Productivity. Developers often find that they have to write considerably less "plumbing code"
when developing with .NET, which enables them to focus more on writing application logic. Also, most developers find that
.NET provides a rich library of resources, organized in a clear and consistent manner, which results in an easier learning

Average rating:
6 out of 9

Rate this page

Print this page

E-mail this page

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

2 of 23 4/6/2004 4:52 PM

curve compared to that of other technologies.

Increased code reliability and security. A developer can more easily write reliable and secure code with .NET than with
native code. This is due to features such as code access security and the common language runtime (CLR), which help to
prevent .NET code from inadvertently affecting other running code and reduce the opportunity for hackers to use .NET
code to disrupt or control an environment.

Enhanced performance and scalability. Developers might notice an improvement in the performance and scalability of
their code when it is migrated to .NET because all .NET languages support and are able to take advantage of features such
as multithreading.

XCOPY deployment. For most .NET applications, deployment is simply a matter of copying the necessary files to a folder
on the hard drive and, optionally, registering shared components with the operating system. This is a much cleaner
deployment strategy than other applications typically use.

For a discussion of the top 10 reasons why developers might want to migrate to .NET, see the Top 10 Reasons for
Developers to Use the .NET Framework 1.1.

.NET also benefits systems administrators. For a list of the top 10 reasons why administrators might want to move to .NET,
see the Top 10 Reasons for Systems Administrators to Use the .NET Framework 1.1.

For an introduction to methods for migrating C++ code to Managed C++, see the Introduction to Wrapping C++ Classes in
the Managed Extensions for C++ Migration Guide.

How Much Change to My Code Will Be Required?

In most cases, there will be some manual effort required to port COM+ code to .NET Enterprise Services, depending on a
number of factors, including which language your COM+ components are developed in. Visual Basic 6 developers, for
example, will have some support from tools in the upcoming Visual Studio 2005 that convert class definitions and method
signatures without modifying the body of subroutines and functions (except for calls to other converted methods).

C++ developers will have to do most of their COM+ code to .NET code conversion manually, although they might find that
the converted code might be more concise, because most of the plumbing is implemented in the CLR instead of class
libraries, such as the Active Template Library (ATL). C++ developers can also select which language they want to port their
applications to, such as Managed C++, for the highest fidelity with their existing code base, or C#, which could result in even
more concise code.

Porting COM+ Components to .NET Enterprise Services

Developers who migrate existing COM+ code from native programming languages and tools, such as Visual Basic 6 and
Visual C++, will need to modify some of their existing code in order to convert it fully to .NET code. The amount of work that
this entails depends upon the existing code base and the tools that are available. The following table summarizes the options
to consider when migrating code to .NET.

Convert from Convert to Code conversion tools available Code conversion effort
required

Visual Basic 6 Visual Basic .NET Yes (in Visual Studio 2005) Much of the Visual Basic 6 code
ports directly to Visual Basic
.NET. The Visual Basic 6 code
migration tool in Visual Studio
2005 will convert most of the
class and method declarations
and types into Visual Basic .NET
syntax.

Visual C++ Visual C++ .NET No C++ .NET is particularly useful
for writing code that
interoperates between native
code and .NET.

Visual C++ Visual C# No C# syntax is similar to C++ in
many ways. Developer effort is
required in order to perform the
conversion.

.NET Attributes

When COM+ components are installed, they must either be configured manually using the Component Services snap-in tool,
or configured through script or code.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

3 of 23 4/6/2004 4:52 PM

For example, suppose you want to mark your components as requiring transaction support, and you specify that each
component's AddSale() method should automatically commit the transaction if it completes without error. To do this,
manually configure the properties of the components and required methods in the COM+ Component Services management
console:

Open the Component Services Management Console and navigate to the correct application and component.1.

Open the properties of this component, click the Transactions tab, and then click Required.2.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

4 of 23 4/6/2004 4:52 PM

Click OK, and navigate through the component explorer to find the ATLPerfTests object's AddSale() method.3.

Right-click AddSale(), open the method's properties, and then select the Automatically deactivate this
object when this method returns check box.

4.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

5 of 23 4/6/2004 4:52 PM

Administrators typically configure deployment-oriented settings, such as security and identity settings, or runtime-oriented
settings, such as role members and recycling. Developers configure development-oriented features for their components,
such as transaction support. In COM+, however, it is difficult for developers to specify from within their code how their
components should be configured. Visual Basic Developers can specify to some extent what transaction support the
components need, but C++ developers cannot. In order to reliably and repeatedly install COM+ components, scripts,
installer applications or installation instructions need to be written.

.NET simplifies component configuration by enabling developers to specify, within the component's code, what services their
components need and how they should be configured. When the component is installed, the platform sets the configuration
settings automatically, although these configuration settings can be changed after installation.

Because COM+ allows its configuration settings to be changed after installation, great care should be taken when changing
many of these properties. For example, changing security settings might affect who can instantiate objects and call their
methods. Removing transaction support, on the other hand, might cause a component to become unreliable, unpredictable,
or even to lose or corrupt data.

Developers use attributes (enclosed in square brackets such as [attribute] for C# and C++, and angled brackets like
<attribute> for Visual Basic .NET) to configure elements of the assembly, application, component, or method. For example,
in the code below, we declare that the SimpleTest component requires transactions and that the transaction will complete

automatically if the AddSale() method completes without error.

C#

 [Transaction(TransactionOption.RequiresNew)]
 public class SimpleTest: ServicedComponent
 {
 ...
 [AutoComplete]
public void AddSale(int orderNumber, int storeID, int
titleID, int qty)
 {
 ...
 }
 ...
 }

Visual Basic .NET

<Transaction(TransactionOption.RequiresNew)> _
Public Class VBTestObject : Inherits ServicedComponent
 ...
<AutoComplete> _
Public Function Sum(ByVal number1 As Integer, ByVal number2
As Integer) As Integer
 ...
 End Function
 ...
 End Class

The following table contains the commonly used attributes that can be applied to an Enterprise Services component and
indicates whether they are safe to change after installation.

Attribute Scope Primary Owner Safe to modify at runtime?
ApplicationAccessControl Assembly Developer No.

Developer might have written code
with a hard or implied dependency on
how the application is secured.

Reducing access controls can
compromise security of your system.

ApplicationActivation Assembly Administrator Yes (with care).
Changing to or from Library or Service
can affect performance and can break
queued components.

ApplicationID Assembly Developer Yes (with care).
Changing this can affect hard-coded
component registration tools.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

6 of 23 4/6/2004 4:52 PM

ApplicationName Assembly Developer Yes (with care).
Changing this can affect hard-coded
component registration tools.

ApplicationQueuing Assembly Developer No.
AutoComplete Method Developer No.

(See "Transactions" below.)
ComponentAccessControl Class Developer No.

Developer might have written code
with a hard or implied dependency on
how the component is secured.

Reducing access controls can
compromise security of your system.

ConstructionEnabled Class Administrator Yes.
The constructor string can be changed,
but do not toggle construction on/off.

Description Assembly
Class
Method
Interface

Administrator Yes.

EventTrackingEnabled Class Administrator Yes.
InterfaceQueuing Class

Interface
Developer No.

JustInTimeActivation Class Developer No.
MustRunInClientContext Class Developer No.

The component might not be
compatible with the client's context.

ObjectPooling Class Developer Yes—Pool settings can be changed.
Do NOT toggle object pooling on/off
because this might break the
component.

PrivateComponent Class Developer No.
The developer specifically wanted this
component to not be publicly callable.
The component might not have been
tested to support unknown usage
patterns. This could expose serious
security threats if made public.

SecurityRole - Role Names Assembly
Class
Interface

Developer No—do NOT remove roles.
The developer might have written code
with an explicit dependency on
specified roles, or implicit expectations
on the presence of a role.

SecurityRole - Role Members Assembly
Class
Interface

Administrator Yes (with care).
Opening access controls too widely can
compromise the security of your
system, and tightening them might
restrict access too much.

Synchronization Class Developer No.
Transaction Class Developer No.

Modifying a component's transaction
support can compromise the system's
reliability and integrity.

The table above also shows which configuration elements the component developer primarily owns and which the
administrator primarily owns. It is not recommended to change any of the developer's settings unless you have detailed
knowledge of how it will affect the code. Attributes related to security that were specified by the developer may be changed
by the administrator, but great care must be taken to ensure that the security is configured so that access to the component
or application is sufficiently restricted, but not overly so.

Attributes are a simple and effective way for developers to specify the configuration requirements of their components while
enabling administrators to change configuration settings after installation. For details of the attributes that Enterprise
Services provides, see the .NET Framework Class Library.

.NET Enterprise Services vs. COM+ Performance

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

7 of 23 4/6/2004 4:52 PM

To measure the performance of Enterprise Services compared to COM+, we created components in the following languages:

Visual C++ .NET and ATL COM+

Visual Basic 6 COM+

C# and .NET Framework 1.1 Enterprise Services

Visual Basic .NET and .NET Framework 1.1 Enterprise Services

Each component contains two public methods:

Sum(): This trivial method adds two numbers together to simulate a lightweight operation that performs no disk or
database access operations.

AddSale(): This typical method is transacted and calls the private method InsertSale() that inserts a record into a table
and completes the transaction before returning. This method illustrates the performance characteristics of a "real-world"
method doing typical business application work.

We then created a test program that performed the following tests on each component:

Repeatedly create/call/release. This test creates an object, calls it, and releases it inside a loop.

Create/call repeatedly/release. This test instantiates an object outside of the loop, calls it several thousand times inside
the loop, and releases the object once at the end.

The test program executed both of these tests against each component and measured the time taken to perform each test
using a high-resolution timer that wrote the results to a comma-separated file. The results in this file were imported into
Microsoft® Excel and analyzed. For code listings for each of these components, see Appendix 5: Performance Test Source
Code.

The tests were run on machines with the configurations shown in the following table.

 Machine 1: Server Machine Machine 2: Client Machine/Single Machine
CPU Dual Pentium 4 Xeon 3.06 GHz Dual Pentium 4 Xeon 2.8 GHz
RAM 1GB 1GB
Disk Local SCSI Local SCSI
Network Gigabit Ethernet Gigabit Ethernet
OS and .NET Windows Server™ 2003

.NET Framework 1.1
Windows Server 2003
.NET Framework 1.1

The specific results you might see from running the test application on other hardware might differ by varying amounts from
the results we report below. However, your results should be proportional to the results we present here.

Test Results and Analysis

In the following sections we analyze the results of the performance tests run against the code discussed previously. These
results were obtained from running the tests on the hardware and software listed above. The list of all results is included in
Appendix 6: Test Results.

In the following charts that show these results, note that the taller the chart column or the larger the numbers, the better
the performance.

Object Activation and Disposal Performance

First, let's look at the performance of native COM+ components developed using C++ and Visual Basic 6 to gain an
understanding of how the COM+ infrastructure performs. The chart below shows the number of calls per second achieved by
repeatedly creating an object, calling its trivial method, and releasing it.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

8 of 23 4/6/2004 4:52 PM

The original designers of Microsoft Transaction Server (MTS) 1.0 looked at similar data and found that the cross-process and
cross-machine activation times are dominated by establishing the infrastructure necessary to deliver the call—the proxy, the
DCOM (or cross-process) channel, the stub, and the context. This was a primary motivation for designing Just In Time (JIT)
activation, which does the following:

Allows the server component to control its own lifetime by calling SetComplete() or SetAbort() before returning

Amortizes the cost of establishing the DCOM plumbing over multiple method calls

The following chart illustrates what happens if we run a modified test that takes advantage of JIT-activation by creating a
single object, and repeatedly calling a trivial method that adds two numbers together and then releases the object at the end
of the test loop.

These results show a significant performance improvement in the number of calls per second when using JIT-activation.
Using JIT-activation and Visual Basic 6 produces results that are almost 33 times faster than C++ without using
JIT-activation (approximately 8600 Visual Basic 6 JIT-activated calls per second compared to approximately 261 Visual C++
non-JIT-activated calls per second).

Once you've established the plumbing necessary to do work, and when making cross machine calls, the network begins to
dominate the performance. In this case, Visual Basic 6 and C++ are very close performance-wise with Visual Basic 6,
performing 88% as fast as C++.

In Enterprise Services, extra work is done to establish the necessary plumbing. In particular, extra calls are required to
construct the object and to release it. This means that if you were to compare the cost of simply creating and destroying an
object without doing any work in the object, the cost of the extra round trips would dominate the performance comparison.
In Visual Studio 2005, Enterprise Services will be enhanced to eliminate one of the activation round trips, yielding a 20-30%
improvement in performance (compared to the .NET Framework 1.1) when using the "activate/single call/release" pattern.
However, you should avoid this pattern if at all possible.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

9 of 23 4/6/2004 4:52 PM

Given that C++ and Visual Basic 6 are so close in performance when using JIT-activation, it would be expected that
Enterprise Services using C# and Visual Basic .NET would have approximately the same performance. The figure below
shows this by running the above test that calls the trivial method.

This data illustrates the number of calls per second made against a trivial method that simply adds two integers, calls
SetComplete() on the object's context, and returns the result. Most of the cost of activating and releasing the object is
gone, but the cost of delivering the call is still there, due to operations such as marshaling the buffers and converting to a
call stack.

Even with this very simple method, Enterprise Services is very close to the performance of Visual Basic 6 when going cross
process. When calling across machines, all the languages perform very closely to each other.

However, a typical business application will have more complex work being done in the methods. The following chart shows
the relative performance of the same application written in four different languages that repeatedly calls a typical method to
open a database connection and execute a simple SQL statement while inside a distributed transaction.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

10 of 23 4/6/2004 4:52 PM

The preceding results show that, within the experimental error, all languages give equivalent results when doing significant
work inside the method. COM+ native applications written using C++ and Visual Basic 6 using ADO perform at the same
speed as C# or Visual Basic .NET applications using Enterprise Services. Note that it matters very little from a performance
perspective if you are running cross-process or cross-machine.

Results Summary

The results above illustrate how important JIT-activation and the "create/repeat call/release" calling pattern are as an aid to
ensuring that your components perform as well as possible.

Conclusion

We have shown some important reasons why migrating your code to .NET can be beneficial. We also discussed the
performance characteristics of native COM+ and .NET Enterprise Services components when applied to different activation
and calling patterns. By following guidelines, we showed that .NET Enterprise Services components execute just as quickly as
C++ COM+ components. Appendix 1: Performance Recommendations, provides key recommendations that will help you
create high performance .NET Enterprise Service components.

By consistently applying the techniques described here, you can convert your existing COM+ code to .NET Enterprise Service
components today and benefit from the usability, security, and developer productivity advantages of the .NET Framework
without sacrificing performance.

It is also important to note that converting your COM+ components to Enterprise Services components today will make your
code easier to migrate to "Indigo" in the future. Appendix 2: "Indigo" and the Future of .NET provides a brief discussion of
this topic.

Appendix 1: Performance Recommendations

The following sections provide tips and guidance for crafting COM+ and Enterprise Services components that are agile and
offer high levels of performance. It is important to note that most of these suggestions apply equally to .NET Enterprise
Services components as to native COM+ components.

Use Object Pooling & JIT-Activation where appropriate

As the test results above show, method calls are faster than component activations, and activations of unmanaged
components are faster than activations of Enterprise Services components. Therefore, in order to make component-based
applications as fast as possible, it is important to minimize the number of component activations and disposals in your code.

Two services offered by COM+ that provide ways to minimize object activations are:

Just-in-time (JIT) activation, which, as explained previously, is a COM+ service that enables an object to be
seamlessly deactivated while the caller holds an active reference to that object. The client simply calls methods
on the object and COM+ dynamically manages the allocation of objects to serve the request.

1.

Object pooling, which enables objects to be kept active in a pool, ready to be used by any client that requests an
instance of that type of component. COM+ manages the pool for you, handling the details of object activation
and reuse according to the criteria you have specified—for example, the size of the pool.

2.

By holding and reusing references to pooled and JIT-activated components, you can minimize component activations and
disposals and achieve high levels of performance.

For more details about COM+ JIT-activation and object pooling, see the Platform SDK: COM+ (Component Services)
documentation.

Avoid round trips

In order to optimize the performance of COM+ components, it is important to minimize the number of cross-process or
cross-machine calls made between caller and component. Every method call made on a COM+ component results in the call
transitioning across processes (and even machines), and every transition takes time. It is therefore essential to ensure that
any method calls made to COM+ objects are kept to a minimum. A good way to achieve this is to design COM+ components
with methods that perform as much work as possible in a single call, even if that means designing components that deviate
from architectural purity.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

11 of 23 4/6/2004 4:52 PM

Optimize your use of COM+ services

While COM+ provides a broad and valuable range of services, it is important to use these services wisely. If COM+ provides
a service that your component needs, then you should readily adopt that service, as it will most likely be the highest
performance implementation. However, if you do not need a service, you might not want to use it, since your components
might be performing unnecessary work and will not run as fast as possible.

Use COM-marshalable parameters

If the methods of your Enterprise Services component accept parameters through which the caller passes data, we very
strongly suggest that you try to use types that are easy to marshal between COM and .NET, such as:

Boolean

Byte, SByte

Char

DateTime

Decimal

Single, Double

Guid

Int16, UInt16, Int32, UInt32, Int64, UInt64

IntPtr, UIntPtr

String

If you use only these types and avoid passing other complex types (such as structures or arrays), the .NET serializer can
optimize the call-processing stack and serialize your call straight onto the wire (for RPC) or onto the virtual wire (for LRPC).
This lets your call execute much faster. However, if your methods require complex types, your code will call through the
normal DCOM call stack, which incurs extra processing.

Avoid using Finalizers

Avoid implementing Finalizers (the ~Classname() destructor in C# and C++) in your Enterprise Services components.
Finalization is a single-threaded operation of the garbage collector. Finalizing Enterprise components can take considerable
time to complete, hindering garbage collector performance. Your application remains blocked while the garbage collector
engine executes, so if the garbage collector takes a long time to complete, the performance of your whole application will be
impeded.

Instead, consider overriding Dispose(bool) in your objects and performing finalization type actions when Dispose(true) is
called. Also, try to keep such termination code as clean, safe, and simple as possible.

Avoid creating single-threaded COM+ Components

Objects that do not support concurrent access by more than one thread are marked as supporting single-threaded
apartment (STA) semantics. Components that do support multiple concurrent threads accessing the same instance are
marked as being multithreaded-apartment(MTA)-aware.

Because .NET Enterprise Services components are always marked as supporting both STA and MTA, they are not included in
the remainder of this discussion.

All Visual Basic 6 COM+ components are STA only. C++ COM+ developers can choose whether to mark their components as
STA, MTA, or both.

The potential problem with STA COM+ components is that an object can only execute on a single thread, and that thread is
the only one that will execute the object's methods. This serialization enables developers to more easily write STA
components, but at the cost of performance (because cross-domain marshaling will often be required) and scalability
(because only one thread will ever execute in an STA).

We suggest that you avoid creating or using STA components wherever possible, particularly where scalability is important.
It is particularly important to avoid STA threading if a component calls other COM+ components. Such calls often require a
thread switch, which blocks all other COM+ components in that apartment.

To compound things further, the garbage collector's Finalizer blocks when it makes calls on the STA thread that owns an

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

12 of 23 4/6/2004 4:52 PM

object. This serializes the finalization process onto a single thread, which, as explained in the previous topic, can significantly
reduce a system's performance.

Appendix 2: "Indigo" and the Future of .NET

You might have heard about a new platform for connected applications, code-named "Indigo," which Microsoft is currently
developing. So, what is "Indigo"?

"Indigo" is Microsoft's strategic technology platform for developing Service Oriented Connected Applications and was
introduced at the 2003 Professional Developers Conference (PDC) in Los Angeles.

"Indigo" consolidates into one technology stack the concepts, features, and functionality of:

COM

DCOM

COM+/Enterprise Services

ASMX/Web Services

.NET Remoting

Web Service Enhancements

Elements of MSMQ

"Indigo" is a multi-layered platform that abstracts the notion of a service from the protocols and transports necessary to
expose that service to callers. In order to interoperate with as many systems as possible, "Indigo" fully supports advanced
Web services (WS-*) protocols through HTTP, TCP, and IPC. Microsoft currently plans to ship "Indigo" in the Microsoft®
Windows® code-named "Longhorn" timeframe, along with "Indigo" support for Windows XP and Windows Server 2003.

With the future introduction of "Indigo", you might be wondering whether existing technologies such as .NET Enterprise
Services (or ASMX and Remoting, for that matter) are still valid for developing connected applications today. ASMX & WSE,
Enterprise Services, Remoting and MSMQ are absolutely the technologies of choice for today's enterprise-class solutions.
When used appropriately, they provide a sound platform on which to develop applications until "Indigo" is released and
broadly available.

If you write new applications using .NET and migrate existing applications to .NET, you will benefit from improved security,
reliability, management, and scalability. Also, your code will then be much easier to upgrade to "Indigo" than native code.
Watch for detailed guidance on how to prepare your applications for migration to "Indigo", and how to interoperate with
"Indigo" from existing technologies on MSDN in the future.

For a high-level introduction to "Indigo", refer to the MSDN Magazine article, Code Name Indigo: A Guide to Developing and
Running Connected Systems with Indigo. In this article, the author provides an architectural overview of what the future
Microsoft application platform will look like.

For more general information about "Indigo", see Microsoft "Indigo" Frequently Asked Questions.

Appendix 3: Effect of Distributed Transactions on Performance

A question that might arise from the tests above is, "How much impact do COM+ distributed transactions have on the
performance of these components?" In order to answer this question, we re-ran our tests after turning off the "requires
transaction" setting in COM+ for each of the components; the results were as shown in the following chart.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

13 of 23 4/6/2004 4:52 PM

As can be seen from the chart above, the performance of the components without COM+ transaction support is practically
identical to the performance of the components with transactions turned on. This clearly illustrates that the impact of COM+
transactions is negligible in these tests.

Appendix 4: Further Reading

Upgrading Microsoft Visual Basic 6.0 to Microsoft Visual Basic .NET

Covers upgrading your Visual Basic 6.0 applications to Visual Basic .NET with programming tips, tricks, and
side-by-side code comparisons.

Programming with Managed Extensions for Microsoft Visual C++ .NET

Updated for Visual C++ .NET 2003, this book offers developers in-depth and expert coverage of the new
features in the compiler and linker extensions to the language.

.NET Enterprise Services and COM+ 1.5 Architecture

Discusses how Microsoft .NET and Enterprise Services fit together and how to build, control, manage, and
secure COM+/Enterprise Services components.

Performance page on the .NET Framework Developer Center

A great collection of links and resources for further investigation into writing high-performance code and
diagnosing problems when they arise.

Performance Tips and Tricks in .NET Applications

A collection of tips and hints on how to make your .NET applications perform well.

Writing Faster Managed Code: Know What Things Cost

A detailed breakdown of what various actions in .NET code cost.

Garbage Collector Basics and Performance Hints

Describes how the garbage collector works, how the garbage collector affects your code, and how to write
your code to minimize the effects of garbage collection.

Performance Considerations for Run-Time Technologies in the .NET Framework

Discusses topics such as garbage collection and memory usage, JIT, threading, .NET Remoting, and security.

Appendix 5: Performance Test Source Code

C++\ATL Component

Header File

// ATLPerfTestObj.h : Declaration of the CATLPerfTestObj

#pragma once
#include "ATLPerfTests.h"
#include "resource.h" // main symbols
#include <comsvcs.h>
#include <mtxattr.h>

// CATLPerfTestObj

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

14 of 23 4/6/2004 4:52 PM

class ATL_NO_VTABLE CATLPerfTestObj :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CATLPerfTestObj, &CLSID_ATLPerfTestObj>,
 public IDispatchImpl<IPerfTestObj, &IID_IPerfTestObj, &LIBID_ATLPerfTestsLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
 CATLPerfTestObj()
 {
 }

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_ATLPERFTESTOBJ)

DECLARE_NOT_AGGREGATABLE(CATLPerfTestObj)

BEGIN_COM_MAP(CATLPerfTestObj)
 COM_INTERFACE_ENTRY(IPerfTestObj)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

// IPerfTestObj
public:
 STDMETHOD(Sum)(LONG number1, LONG number2, LONG* result);
 STDMETHOD(AddSale)(LONG orderNumber, LONG storeID, LONG titleID,
LONG qty);

private:
 HRESULT InsertSaleRecord(LONG orderNumber, LONG storeID, LONG
titleID, LONG qty);

};

OBJECT_ENTRY_AUTO(__uuidof(ATLPerfTestObj), CATLPerfTestObj)

Source File

// ATLPerfTestObj.cpp : Implementation of CATLPerfTestObj

#include "stdafx.h"
#include "ATLPerfTestObj.h"
#include ".\atlperftestobj.h"

#include "atlstr.h"

#import "c:\Program Files\Common Files\System\ADO\msado15.dll" rename_namespace("ADO")
 rename("EOF", "EndOfFile")
using namespace ADO;

// CATLPerfTestObj

// Here we perform a simple operation to simulate a trivial method.
STDMETHODIMP CATLPerfTestObj::Sum(LONG number1, LONG number2, LONG* result)
{
 // Obtain the object context.
 IObjectContext* ctx = NULL;
HRESULT hr = CoGetObjectContext(IID_IObjectContext,
(LPVOID*)&ctx);
 if(SUCCEEDED(hr))
 {
 // Perform the calculation.
 *result = number1 + number2;

 // Commit the transaction.
 ctx->SetComplete();
 ctx->Release();
 }

 return hr;
}

STDMETHODIMP CATLPerfTestObj::AddSale(LONG orderNumber, LONG storeID, LONG titleID, LONG qty)
{
 // Get the COM+ object context.
 IObjectContext* ctx = NULL;
 HRESULT hr = CoGetObjectContext(IID_IObjectContext, (LPVOID*)&ctx);

 // Check if we have a COM+ context.
 if(SUCCEEDED(hr))
 {
 // The default action is to abort.
 ctx->SetAbort();

 // Insert the record into the database.

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

15 of 23 4/6/2004 4:52 PM

 hr = InsertSaleRecord(orderNumber, storeID, titleID, qty);

 // Check the result of the insert operation.
 if(SUCCEEDED(hr))
 {
 // If all went okay, mark the transaction as
// complete.
 ctx->SetComplete();
 }

 // Clean up the context pointer.
 ctx->Release();
 ctx = NULL;
 }

// Return the overall result. Note that the result will only
// be S_OK if the insert operation executed without error.
 return hr;
}

// Inserts the record of a sale into the database.
HRESULT CATLPerfTestObj::InsertSaleRecord(LONG orderNumber, LONG storeID,
 LONG titleID, LONG qty)
{
 // The default result is to return a failure.
 HRESULT hr = E_FAIL;

 try
 {
 // Format the SQL that you want the server to execute.
 CString str;
 str.Format("insert into sales (order_no, store_id, \
title_id, order_date, qty) values (%i, %i, %i, \
GetDate(), %i)",
 orderNumber, storeID, titleID, qty);

 // Open up a connection to the database.
 _ConnectionPtr cn("ADODB.Connection");
 cn->Open("Provider=SQLOLEDB;SERVER=localhost;Integrated \
Security=SSPI;DATABASE=ESPERFTESTDB",
 "", "", adConnectUnspecified);

 // Execute the command.
 _variant_t rs;
 rs = cn->Execute(_bstr_t(str), &rs, adCmdText);
 hr = S_OK;

 // Explicitly close the connection.
 cn->Close();
 }
 catch(_com_error e)
 {
 // Any problems, return an error.
 hr = e.Error();
 }

 return hr;
}

Visual Basic 6 Component

Private Function IPerfTestObj_Sum(ByVal nA As Long, ByVal nB As Long) As Long
 IPerfTestObj_Sum = nA + nB

 GetObjectContext.SetComplete
End Function

Sub IPerfTestObj_AddSale(ByVal OrderNumber As Long, ByVal StoreID As Long,
 ByVal TitleID As Long, ByVal Qty As Long)
 ' The default is to abort if an error is thrown.
 GetObjectContext.SetAbort

 Call InsertSaleRecord(OrderNumber, StoreID, TitleID, Qty)

 ' This did not fail, so you can complete the transaction.
 GetObjectContext.SetComplete
End Sub

Sub InsertSaleRecord(ByVal OrderNumber As Long, ByVal StoreID As Long,
 ByVal TitleID As Long, ByVal Qty As Long)
 Dim command As String

 connDB.Open ("Provider=SQLOLEDB;SERVER=localhost;Integrated" + _
"Security=SSPI;DATABASE=ESPERFTESTDB")

 command = "insert into sales (store_id, order_no, order_date, qty, title_id)
 values (" & StoreID & ", " & OrderNumber & ", GetDate(),
 " & Qty & ", " & TitleID & ")"

 connDB.Execute (command)
 connDB.Close
End Sub

C# Component

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

16 of 23 4/6/2004 4:52 PM

using System;
using System.EnterpriseServices;
using System.Data.SqlClient;
using System.Reflection;
using System.Runtime.InteropServices;

using perftestsinterop;

[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyKeyFile("..\\..\\sign.key")]
[assembly: ApplicationName("PerfTest")]
[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationAccessControl(false)]

namespace CSPerfTests
{
 [Guid("0BA5534E-8544-42e2-A909-3265105BEA09")]
 [Transaction(TransactionOption.Required)]
 public class CSPerfTestObj : ServicedComponent, IPerfTestObj
 {
 public CSPerfTestObj()
 {
 }

 // Here you perform a simple operation to simulate a
// trivial method.
 public int Sum(int number1, int number2)
 {
 int result = 0;

 // Perform the calculation.
 result = number1 + number2;

 // Commit the transaction.
 ContextUtil.SetComplete();

 return result;
 }

 // Add a new sale item in a transaction.
 public void AddSale(int orderNumber, int storeID, int
titleID, int qty)
 {
 try
 {
 // Insert the record into the database.
 InsertSaleRecord(orderNumber, storeID, titleID,
qty);

 // If all went okay, mark the transaction as
// complete.
 ContextUtil.SetComplete();
 }
 catch(Exception)
 {
 ContextUtil.SetAbort();
 throw;
 }
 }

 // Insert the record of a sale into the database.
 private void InsertSaleRecord(int orderNumber, int storeID,
int titleID, int qty)
 {
 // Format the SQL that you want the server to
// execute.
 string commandStr = string.Format("insert into sales\
 (order_no, store_id, title_id, order_date, qty) \
 values ({0}, {1}, {2}, GetDate(), {3})",
 orderNumber, storeID, titleID, qty);

 // Open up a connection to the database.
 SqlConnection connection = new
SqlConnection("SERVER=localhost;Integrated
Security=SSPI;DATABASE=ESPERFTESTDB");
 connection.Open();

 // Execute the command.
 SqlCommand cmd = new SqlCommand(commandStr,
connection);
 cmd.ExecuteNonQuery();

 // Explicitly close the connection.
 connection.Close();
 }
 }
}

Visual Basic .NET Component

Imports System
Imports System.EnterpriseServices
Imports System.Data.SqlClient
Imports System.Reflection

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

17 of 23 4/6/2004 4:52 PM

Imports System.Runtime.InteropServices

Imports perftestsinterop

<Assembly: AssemblyVersion("1.0.0")>
<Assembly: AssemblyKeyFile("..\..\sign.key")>
<Assembly: ApplicationName("PerfTest")>
<Assembly: ApplicationActivation(ActivationOption.Server)>
<Assembly: ApplicationAccessControl(False)>

<Guid("53400EEB-E8C1-4D15-81D4-AFAC896B34FA"), _
Transaction(TransactionOption.Required)> _
 Public Class VBPerfTestObj
 Inherits ServicedComponent
 Implements IPerfTestObj

 '-- Here you perform a simple operation to simulate a
 '-- trivial method.
 Public Function Sum(ByVal number1 As Integer, ByVal number2 As
Integer) As Integer _
 Implements IPerfTestObj.Sum
 Dim result As Integer = 0

 '-- Perform the calculation.
 result = number1 + number2

 '-- Commit the transaction.
 ContextUtil.SetComplete()

 Return result
 End Function

 '-- Add a new sale item in a transaction.
 Public Sub AddSale(ByVal orderNumber As Integer, ByVal storeID As
Integer, ByVal titleID As Integer, ByVal qty As Integer) _
 Implements IPerfTestObj.AddSale
 Try
 '-- Insert the record into the database.
 InsertSaleRecord(orderNumber, storeID, titleID, qty)

 '-- If all went okay, mark the transaction as complete.
 ContextUtil.SetComplete()

 Catch
 ContextUtil.SetAbort()
 Throw
 End Try

 End Sub

 '-- Insert the record of a sale into the database.
 Private Sub InsertSaleRecord(ByVal orderNumber As Integer, ByVal
storeID As Integer, ByVal titleID As Integer, ByVal qty As
Integer)
 '-- Format the SQL that you want the server to execute.
 Dim commandStr As String
 commandStr = String.Format("insert into sales (order_no," + _
"store_id, title_id, order_date, qty) values ({0}, {1}, _
{2}, GetDate(), {3})", _
 orderNumber, storeID, titleID, qty)

 '-- Open up a connection to the database.
 Dim connection As SqlConnection = New
 SqlConnection("SERVER=localhost;Integrated
 Security=SSPI;DATABASE=ESPERFTESTDB")
 connection.Open()

 '-- Execute the command.
 Dim cmd As SqlCommand = New SqlCommand(commandStr, connection)
 cmd.ExecuteNonQuery()

 '-- Explicitly close the connection.
 connection.Close()
 End Sub

End Class

Test Application

using System;
using System.Reflection;
using System.Diagnostics;
using System.Threading;
using System.Runtime.InteropServices;
using System.EnterpriseServices;
using System.Text;
using System.IO;
using COMAdmin;

using ATLPerfTestsLib;
using CSPerfTests;
using VBPerfTests;

[assembly: AssemblyVersion("1.0.*")]

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

18 of 23 4/6/2004 4:52 PM

namespace TestApp
{
 [Flags]
 enum TestType
 {
 NoOp = 0x0,
 LightMethod = 0x1,
 HeavyMethod = 0x2,
 Activations = 0x40000000,

 ActivateLight = Activations | LightMethod,
 ActivateHeavy = Activations | HeavyMethod,

 }

 public class App
 {
 public static HighResolutionTimer Timer;
 public static int RunID = 0;
 public static TextWriter outputFile;

 [STAThread]
 public static void Main(string[] args)
 {
 Timer = new HighResolutionTimer();
 RunID = (int)Timer.TickCount;

 Console.WriteLine("\a");

 outputFile = new StreamWriter(new
FileStream("results.csv", FileMode.Create,
FileAccess.Write), Encoding.UTF8);

 Type t;
 long iterations = 5000;

 // Test empty activations and default disposals.
 outputFile.WriteLine("Test Type, Number of
Iterations, Object Type, Elapsed Time (sec),
Operations/sec");

 t = typeof(ATLPerfTestObjClass);
 TestActivations(t, iterations, TestType.Activations,
ApartmentState.MTA);

 t = Type.GetTypeFromProgID("VB6Perf.HPerf");
 TestActivations(t, iterations, TestType.Activations,
ApartmentState.STA);

 t = typeof(CSPerfTestObj);
 TestActivations(t, iterations, TestType.Activations,
ApartmentState.MTA);

 t = typeof(VBPerfTestObj);
 TestActivations(t, iterations, TestType.Activations,
ApartmentState.MTA);

 t = typeof(ATLPerfTestObjClass);
 TestActivations(t, iterations,
TestType.ActivateLight, ApartmentState.MTA);

 t = Type.GetTypeFromProgID("VB6Perf.HPerf");
 TestActivations(t, iterations,
TestType.ActivateLight, ApartmentState.STA);

 t = typeof(CSPerfTestObj);
 TestActivations(t, iterations,
TestType.ActivateLight, ApartmentState.MTA);

 t = typeof(VBPerfTestObj);
 TestActivations(t, iterations,
TestType.ActivateLight, ApartmentState.MTA);

 t = typeof(ATLPerfTestObjClass);
 TestActivations(t, iterations,
TestType.ActivateHeavy, ApartmentState.MTA);

 t = Type.GetTypeFromProgID("VB6Perf.HPerf");
 TestActivations(t, iterations,
TestType.ActivateHeavy, ApartmentState.STA);

 t = typeof(CSPerfTestObj);
 TestActivations(t, iterations,
TestType.ActivateHeavy, ApartmentState.MTA);

 t = typeof(VBPerfTestObj);
 TestActivations(t, iterations,
TestType.ActivateHeavy, ApartmentState.MTA);

 // Increase the number of iterations by a
// couple of orders of magnitude in order to get good
// Trivial Method Test numbers:
 t = typeof(ATLPerfTestObjClass);
 TestActivations(t, iterations*100,
TestType.LightMethod, ApartmentState.MTA);

 t = Type.GetTypeFromProgID("VB6Perf.HPerf");

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

19 of 23 4/6/2004 4:52 PM

 TestActivations(t, iterations*100,
TestType.LightMethod, ApartmentState.STA);

 t = typeof(CSPerfTestObj);
 TestActivations(t, iterations*100,
TestType.LightMethod, ApartmentState.MTA);

 t = typeof(VBPerfTestObj);
 TestActivations(t, iterations*100,
TestType.LightMethod, ApartmentState.MTA);

 t = typeof(ATLPerfTestObjClass);
 TestActivations(t, iterations, TestType.HeavyMethod,
ApartmentState.MTA);

 t = Type.GetTypeFromProgID("VB6Perf.HPerf");
 TestActivations(t, iterations, TestType.HeavyMethod,
ApartmentState.STA);

 t = typeof(CSPerfTestObj);
 TestActivations(t, iterations, TestType.HeavyMethod,
ApartmentState.MTA);

 t = typeof(VBPerfTestObj);
 TestActivations(t, iterations, TestType.HeavyMethod,
ApartmentState.MTA);

 outputFile.Close();

 Console.WriteLine("\a");
 }

 private static void TestActivations(Type type, long
iterations, TestType test, ApartmentState aptype)
 {
 // Create a new thread to control the
// apartment type of running thread.
 TestRunner runner = new TestRunner(type, iterations,
test);
 Thread thread = new Thread(new
ThreadStart(runner.Run));
 thread.ApartmentState = aptype;
 thread.Start();
 thread.Join();
 COMAdminCatalog catalog = new COMAdminCatalogClass();
 catalog.ShutdownApplication("PerfTest");
 }

 class TestRunner
 {
 Type type;
 long iterations;
 TestType test;

 string testTypeName;
 string componentTypeName;

 public TestRunner(Type type, long iterations,
TestType test)
 {
 this.type = type;
 this.iterations = iterations;
 this.test = test;

 // Form the test type and component type
// name strings for later use.
 switch(test)
 {
 case TestType.Activations:
 testTypeName = "Activations, ";
 break;

 case TestType.ActivateLight:
 testTypeName = "Activations with \
Light Method Call, ";
 break;

 case TestType.ActivateHeavy:
 testTypeName = "Activations with \
Heavy Method Call, ";
 break;

 case TestType.LightMethod:
 testTypeName = "Light Method \
Calls, ";
 break;

 case TestType.HeavyMethod:
 testTypeName = "Heavy Method \
Calls, ";
 break;
 };

 if (type == typeof(ATLPerfTestObjClass))
 componentTypeName = "C++/ATL, ";
 else if(type == typeof(CSPerfTestObj))
 componentTypeName = "C#, ";
 else if(type == typeof(VBPerfTestObj))

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

20 of 23 4/6/2004 4:52 PM

 componentTypeName = "VB.NET, ";
 else
 componentTypeName = "VB6, ";
 }

 void TestLoop(long iterations)
 {
 bool timingActivations = (this.test &
TestType.Activations) != 0;
 perftestsinterop.IPerfTestObj o = null;

 // If you are not timing activations, do this
// outside the loop.
 if(!timingActivations)
 {
 o = (perftestsinterop.IPerfTestObj)
Activator.CreateInstance(type);
 }

 // Perform the test.
 for (int i = 0; i < iterations; i++)
 {
 if(timingActivations)
 {
 o = (perftestsinterop.IPerfTestObj)
 Activator.CreateInstance(type);
 }

 // Work out which test you need to
// perform and do it. Pull out the
// activation bit so you are left
// with the kind of method you want to
// run.
 switch(test & ~TestType.Activations)
 {
 case TestType.NoOp:
 break;

 case TestType.LightMethod:
 o.Sum(100, 200);
 break;

 case TestType.HeavyMethod:
 int count =
(int)Timer.TickCount;
 o.AddSale(RunID, count, count
% 10000, count % 10);
 break;
 };

 if(timingActivations)
 {
 // Dispose of the object now.
// You are done.
 if (type.IsCOMObject)
 {
 Marshal.ReleaseComObject(o);
 }
 else
 {
 ServicedComponent.DisposeObject((ServicedComponent)o);
 }
 }
 }
 }

 public void Run()
 {
 float elapsedTime = 0.0f;

 // Prepare for the run.
 TestLoop(10);

 // Stop and reset the timer.
 Timer.Stop();
 Timer.Reset();
 Timer.Start();

 TestLoop(iterations);

 // When the loop has ended, stop the timer and
// return the elapsed time.
 elapsedTime = Timer.ElapsedTime;
 Timer.Stop();

 // Output the result.
 StringBuilder sb = new StringBuilder();
 sb.Append(testTypeName);
 sb.Append(iterations.ToString());
 sb.Append(", ");
 sb.Append(componentTypeName);
 sb.Append(elapsedTime.ToString());
 sb.Append(", ");
 sb.Append((iterations/elapsedTime).ToString());
 outputFile.WriteLine(sb.ToString());

 GC.WaitForPendingFinalizers();
 }

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

21 of 23 4/6/2004 4:52 PM

 }

 }
}

Appendix 6: Test Results
TX Scope JITA Method Type Object Type Operations/second
Tx In Process No JITA No Method C++/ATL 2846.9
Tx In Process No JITA No Method Visual Basic 6 1186.2
Tx In Process No JITA No Method C# 1581.7
Tx In Process No JITA No Method Visual Basic .NET 1581.6
Tx In Process No JITA Trivial Method C++/ATL 2588.1
Tx In Process No JITA Trivial Method Visual Basic 6 1138.8
Tx In Process No JITA Trivial Method C# 1423.8
Tx In Process No JITA Trivial Method Visual Basic .NET 1423.5
Tx In Process No JITA Typical Method C++/ATL 243.3
Tx In Process No JITA Typical Method Visual Basic 6 243.3
Tx In Process No JITA Typical Method Visual Basic .NET 245.4
Tx In Process No JITA Typical Method C# 245.4
Tx In Process JITA Trivial Method C++/ATL 49084.6
Tx In Process JITA Trivial Method Visual Basic 6 29655.3
Tx In Process JITA Trivial Method C# 12218.5
Tx In Process JITA Trivial Method Visual Basic .NET 12166.3
Tx In Process JITA Typical Method C++/ATL 245.4
Tx In Process JITA Typical Method Visual Basic 6 247.6
Tx In Process JITA Typical Method C# 247.6
Tx In Process JITA Typical Method Visual Basic .NET 245.4
Tx Out Of Process No JITA No Method C++/ATL 351.5
Tx Out Of Process No JITA No Method Visual Basic 6 237.2
Tx Out Of Process No JITA No Method C# 176.8
Tx Out Of Process No JITA No Method Visual Basic .NET 176.8
Tx Out Of Process No JITA Trivial Method C++/ATL 261.2
Tx Out Of Process No JITA Trivial Method Visual Basic 6 192.4
Tx Out Of Process No JITA Trivial Method C# 124.3
Tx Out Of Process No JITA Trivial Method Visual Basic .NET 123.8
Tx Out Of Process No JITA Typical Method C++/ATL 123.2
Tx Out Of Process No JITA Typical Method Visual Basic 6 121.7
Tx Out Of Process No JITA Typical Method Visual Basic .NET 80.0
Tx Out Of Process No JITA Typical Method C# 79.3
Tx Out Of Process JITA Trivial Method C++/ATL 16456.1
Tx Out Of Process JITA Trivial Method Visual Basic 6 8600.9
Tx Out Of Process JITA Trivial Method C# 7299.8
Tx Out Of Process JITA Trivial Method Visual Basic .NET 7281.1
Tx Out Of Process JITA Typical Method C++/ATL 243.3
Tx Out Of Process JITA Typical Method Visual Basic 6 245.4
Tx Out Of Process JITA Typical Method C# 243.3
Tx Out Of Process JITA Typical Method Visual Basic .NET 245.4
Tx Cross Machine No JITA No Method C++/ATL 142.8
Tx Cross Machine No JITA No Method Visual Basic 6 93.5
Tx Cross Machine No JITA No Method C# 100.7
Tx Cross Machine No JITA No Method Visual Basic .NET 100.7
Tx Cross Machine No JITA Trivial Method C++/ATL 117.1
Tx Cross Machine No JITA Trivial Method Visual Basic 6 80.2
Tx Cross Machine No JITA Trivial Method C# 72.8
Tx Cross Machine No JITA Trivial Method Visual Basic .NET 73.0
Tx Cross Machine No JITA Typical Method C++/ATL 81.7
Tx Cross Machine No JITA Typical Method Visual Basic 6 61.7
Tx Cross Machine No JITA Typical Method C# 48.0

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

22 of 23 4/6/2004 4:52 PM

Tx Cross Machine No JITA Typical Method Visual Basic .NET 48.9
Tx Cross Machine JITA Trivial Method C++/ATL 1902.7
Tx Cross Machine JITA Trivial Method Visual Basic 6 1672.5
Tx Cross Machine JITA Trivial Method C# 1573.3
Tx Cross Machine JITA Trivial Method Visual Basic .NET 1552.6
Tx Cross Machine JITA Typical Method C++/ATL 242.9
Tx Cross Machine JITA Typical Method Visual Basic 6 245.2
Tx Cross Machine JITA Typical Method C# 238.5
Tx Cross Machine JITA Typical Method Visual Basic .NET 238.5
No Tx In Process No JITA No Method C++/ATL 2695.3
No Tx In Process No JITA No Method Visual Basic 6 1207.0
No Tx In Process No JITA No Method C# 1664.7
No Tx In Process No JITA No Method Visual Basic .NET 1654.1
No Tx In Process No JITA Trivial Method C++/ATL 2586.3
No Tx In Process No JITA Trivial Method Visual Basic 6 1154.6
No Tx In Process No JITA Trivial Method C# 1517.1
No Tx In Process No JITA Trivial Method Visual Basic .NET 1507.0
No Tx In Process No JITA Typical Method C++/ATL 245.1
No Tx In Process No JITA Typical Method Visual Basic 6 245.4
No Tx In Process No JITA Typical Method C# 247.0
No Tx In Process No JITA Typical Method Visual Basic .NET 246.2
No Tx In Process JITA Trivial Method C++/ATL 50660.9
No Tx In Process JITA Trivial Method Visual Basic 6 31121.7
No Tx In Process JITA Trivial Method C# 12928.1
No Tx In Process JITA Trivial Method Visual Basic .NET 12808.6
No Tx In Process JITA Typical Method C++/ATL 247.4
No Tx In Process JITA Typical Method Visual Basic 6 246.2
No Tx In Process JITA Typical Method C# 247.4
No Tx In Process JITA Typical Method Visual Basic .NET 247.5
No Tx Out Of Process No JITA No Method C++/ATL 327.0
No Tx Out Of Process No JITA No Method Visual Basic 6 239.7
No Tx Out Of Process No JITA No Method C# 177.4
No Tx Out Of Process No JITA No Method Visual Basic .NET 177.9
No Tx Out Of Process No JITA Trivial Method C++/ATL 259.3
No Tx Out Of Process No JITA Trivial Method Visual Basic 6 192.2
No Tx Out Of Process No JITA Trivial Method C# 125.1
No Tx Out Of Process No JITA Trivial Method Visual Basic .NET 124.7
No Tx Out Of Process No JITA Typical Method C++/ATL 123.3
No Tx Out Of Process No JITA Typical Method Visual Basic 6 123.6
No Tx Out Of Process No JITA Typical Method C# 82.6
No Tx Out Of Process No JITA Typical Method Visual Basic .NET 82.6
No Tx Out Of Process JITA Trivial Method C++/ATL 16637.9
No Tx Out Of Process JITA Trivial Method Visual Basic 6 8847.9
No Tx Out Of Process JITA Trivial Method C# 7345.1
No Tx Out Of Process JITA Trivial Method Visual Basic .NET 7392.8
No Tx Out Of Process JITA Typical Method C++/ATL 244.8
No Tx Out Of Process JITA Typical Method Visual Basic 6 244.9
No Tx Out Of Process JITA Typical Method C# 243.9
No Tx Out Of Process JITA Typical Method Visual Basic .NET 245.5
No Tx Out Of Process No JITA No Method C++/ATL 147.5
No Tx Cross Machine No JITA No Method Visual Basic 6 95.1
No Tx Cross Machine No JITA No Method C# 102.3
No Tx Cross Machine No JITA No Method Visual Basic .NET 101.7
No Tx Cross Machine No JITA Trivial Method C++/ATL 119.6
No Tx Cross Machine No JITA Trivial Method Visual Basic 6 81.6
No Tx Cross Machine No JITA Trivial Method C# 74.1
No Tx Cross Machine No JITA Trivial Method Visual Basic .NET 73.5
No Tx Cross Machine No JITA Typical Method C++/ATL 82.2

.NET Enterprise Services Performance (COM+ Technical Articles) http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp?...

23 of 23 4/6/2004 4:52 PM

No Tx Cross Machine No JITA Typical Method Visual Basic 6 61.9
No Tx Cross Machine No JITA Typical Method C# 60.3
No Tx Cross Machine No JITA Typical Method Visual Basic .NET 61.2
No Tx Cross Machine JITA Trivial Method C++/ATL 1896.7
No Tx Cross Machine JITA Trivial Method Visual Basic 6 1620.5
No Tx Cross Machine JITA Trivial Method C# 1576.8
No Tx Cross Machine JITA Trivial Method Visual Basic .NET 1591.5
No Tx Cross Machine JITA Typical Method C++/ATL 242.7
No Tx Cross Machine JITA Typical Method Visual Basic 6 243.7
No Tx Cross Machine JITA Typical Method C# 245.8
No Tx Cross Machine JITA Typical Method Visual Basic .NET 246.0

Manage Your Profile | Legal | Contact Us | MSDN Flash Newsletter

©2004 Microsoft Corporation. All rights reserved. Terms of Use | Privacy Statement

How would you rate the quality of this content?

1 2 3 4 5 6 7 8 9
Poor Outstanding

Tell us why you rated the content this way. (optional)

Average rating:
6 out of 9

1 2 3 4 5 6 7 8 9

24 people have rated this

