Appendix A - ASP Best Practices
The best practices presented here will help you develop Active Server Pages (ASP) applications with well-organized, secure directories and files, and with scripts that execute efficiently. Follow these guidelines to create ASP pages that are styled for consistency, readability, and ease of maintenance.
For best results, you should be familiar with the material in the IIS 5.0 online product documentation, especially the “Building ASP Pages,” and “Developing Web Applications” topics in the “Active Server Pages Guide.”
This appendix is presented as a sequence of topics that parallels the planning and development of an ASP authoring project. For information about developing software components, see “Developing Web Applications” in this book and in the IIS 5.0 online product documentation.
In This Appendix
When to Use ASP
Project Directories and Files
Style Guide for Scripts in ASP pages
HTML Standards
Scripting for Performance
Additional Resources
When to Use ASP
ASP is a server-side scripting environment that makes it easy to deliver dynamic Web pages to users as they request them. With ASP, you can customize the user experience in a number of ways:

Deliver pages that are formatted for the user’s browser make and version.

Gather data submitted on HTML forms, and connect browsers with information resources on the server-side, by using COM components for database update or information retrieval.

Develop Web applications that connect browsers with data resources, such as databases on Microsoft SQL Server or IBM DB2.
Because ASP is optimized for multiple threads and multiple users, you can expect better performance with ASP compared to CGI.
Customizing Information Returned to Users
ASP makes it easy to collect data from users anywhere on the network. This data can be used to customize information, which is sent back to the users via ASP. For example, users could submit their preferences for a home (number of bedrooms, price range, location, and more) to a real estate site, by using HTML forms. ASP would submit a request to the database for only those homes that fit the customers’ preferences.
Updating Records Online
ASP can use data from forms that are submitted by browsers in order to maintain databases. For example, if employees are allowed to access an online personnel database, they can update their own data within the personnel directory.
When Not to Use ASP
Do not use scripts in ASP pages in order to perform tasks that are readily accomplished by browser scripts, since ASP consumes server resources. By scripting the browser to perform tasks such as data validation, calculations, and selection of simple conditional output, you can save server resources for those tasks actually requiring ASP. For example, you could use a client-side script in order to validate the input data and to calculate monthly payments for a user who enters a loan amount and specifies the length of the repayment cycle.
To make the most efficient use of your server resources, use the .asp file name extension for pages that contain scripts or that are likely to need scripting in the future. Use the .htm extension for pages that will contain just HTML statements as well as scripts interpreted by the browser.
Project Directories and Files
Organizing Application Directories and Files
This section provides a model for storage structure and access permissions for ASP applications. Using this model will help you establish consistency, security, and ease of maintenance.
The organization and attributes given to the directories and files in the list below are more important than the names used.
 /Application_Name
 Default.htm
 Global.asa
 /Classes
 /Content
 /ASP
 *.asp
 /HTM
 *.htm
 /Images
 /Media
 /Themes
 /Data (not in site directory)
 /DLL (not in site directory)
 *.dll
 /Helper_Files (not in site directory)
Application Root Directory
The application root directory name should clearly convey the theme of the site. For example, an application for financial research might be named /Financial_Research. Avoid application root names that might be misidentified as standard subdirectories of a site, such as /Media or /Content. Also, avoid names that read like part numbers or codes, such as /FR98346A.
To avoid adversely affecting production sites, develop the application in a development test environment. An easy way to do this is to develop new applications under the IIS HTTP root directory, /InetPub/wwwroot, then move them to the same directory under /InetPub/wwwroot in the production environment when they are ready.
Note /InetPub/wwwroot is the home location for all Microsoft® Visual InterDev® and Microsoft® FrontPage® Web documents. Moving a Web application to a storage location that is not under /InetPub/wwwroot makes it inaccessible to these tools.
The root directory of every application should contain at least these files:

Default.htm or Default.asp

Global.asa
Default.htm, Default.asp
Default.htm or Default.asp should be the default home page for the application, and the server default should be set accordingly using Internet Services Manager. This enables users to find sites in your organization consistently, by typing the server address plus the application root directory name. For example, a user can access MSDN Online by entering http://msdn.microsoft.com/default.asp. Entering the name of the home page is not necessary.
Global.asa
The file Global.asa specifies event scripts, declares objects that have application or session scope, and declares type libraries. For example, Global.asa scripts make application- and session-scope variables available at startup. Global.asa must be stored in the application root directory.
/Classes
The /Classes directory holds Java classes used by the application.
/Content
The /Content directory holds all pages (except Default.htm) and media that might be retrieved by a user of the site.
/ASP
The /ASP subdirectory of /Content contains all pages with server-side scripting. This directory must contain execute permissions so that ASP can execute the page scripts; storing all scripted pages here simplifies permissions management and site security.
/HTM
The /HTM subdirectory of /Content holds all pages containing only standard HTML. This directory is read-only and does not have execute permissions. A page containing server-side scripts that is stored here will not execute.
/Images
The /Images subdirectory of /Content contains graphics that are used independently of theme-related images, such as standard buttons and icons.
/Media
The /Media subdirectory of /Content contains subdirectories for audio, images, animation files, .avi files, and similar items used throughout the application.
/Themes
The /Themes subdirectory of /Content is used in order to enable application-wide changes to the look of a site. The subdirectory contains style sheets, bullets, buttons, icons, rules, and similar items, and should be organized so that you can easily change the look of an application by modifying any or all the theme-related items. Each item in the /Themes subdirectory can be linked dynamically by setting an application variable to its virtual path.
/Data
The /Data directory contains all database access information such as SQL scripts, file­based dataset names or similar data needed by the application. Do not place this directory under the site directory, as this could enable an unauthorized user to access business rules and private data.
/DLLs
The /DLLs directory contains Microsoft® Component Object Model (COM) components and Microsoft® Visual Basic® 6.0 run-time DLLs, such as Vbrun500.dll and Msvbvm50.dll. Do not place this directory under the site directory, as this could enable an unauthorized user to access business rules and private data.
Helper Files
Helper files are server-side include files or text files that make HTML-coded information available across the application. For security reasons, the directory containing helper files should not be stored in the published Web space (the Web site directories identifiable to users).
Using File Name Extension Standards
This section presents conventions for standardizing file name extensions, accounting for the types of files containing scripts, or a combination of HTML and scripts, including Microsoft® Visual Basic® Scripting Edition (VBScript) or Microsoft® JScript®.
Extensions for Page Files
Standards:
.asp—for ASP pages containing scripts
.htm—for static HTML pages
You must use the .asp extension for pages that contain server-side scripting, or that are likely to in the future. In order to save time and resources when serving pages, use the .htm extension for files that do not, and will not, require server-side script execution.
Extensions for Included Files
For consistency, use include files in order to make specific information available to more than one referring page (changes to include files are distributed to all the pages that include them).
Standards:
.inc—for large amounts of data with client-side scripting
.txt—for text-formatted data files without scripting
Do not use .inc for pages containing server-side scripts. If a user manages to display them, any business rules in the scripts will be exposed. Use the .asp extension for all pages containing scripting, or for which scripting is planned, in order to avoid displaying proprietary information coded as scripts in ASP pages.
Style Guide for Scripts in ASP Pages
The following conventions, which apply to the development of ASP pages containing scripts written in VBScript or JScript, are designed to enhance consistency, readability, and ease of maintenance.
In this guide:

Blank Lines in Files

Comments in Scripts

Constant Names

Context Switching

Delimiting Lines of Script

Indentation

Language Default

Layout Order of Scripts

Object and Procedure Call Names

Paths, Using MapPath

Select Case Statement

Spaces in Scripts

Statement Styles

String Concatenation

String Function

Variables: Case Values, Declaration, Names, Value Trimming
Blank Lines in Files
In general, use blank lines sparingly. You should remove all blank lines at the beginning and end of each file, but you might want to include one blank line between statements to increase readability.
Comments in Scripts
Comments should help any script author looking at code begin to understand it immediately. In addition, they should explain the intent of the code or summarize what the code does, not simply repeat what the code says.
General Comments
Write consistent comment blocks near the top of each page. In these blocks, list the file name, the group developing the file (not the person—e-mail should go to a group alias), the date the file was developed, the HTML and scripting standards followed, and dated descriptions of all changes made.
Comments To Explain Obscure Code
Use comments to explain obscure or complex code—any coding that would take a script author more than a few seconds to decipher. Do not leave a phrase such as the following without a comment:
If Err = LOCK Then
Scripts that are commented out should be deleted unless they are placeholders, in which case they should be labeled as such.
Comment Placement
Insert each comment with its corresponding code.

Inline comments should appear two spaces after the corresponding code.

Comments beginning on a new line should be set off with a blank line.
Example:
 <%
 Dim intVariable 'Explicitly declare variable.
 'Assign the variable an integer value.
 intVariable = 5
 %>
Blocked Comments in VBScript
If a single comment spans multiple lines, each line must begin with the standard VBScript comment symbol ('). Large, multistatement comment blocks should be formatted as in the example below.
Example:
Sub ShowIt()
 '======================================
 'This procedure is called when the
 'user selects a language.
 '
 'It displays an appropriate select
 'item based on their language choice.
 '
 'The method choices are each contained
 'in a separate div.
 '======================================
 Dim vntCurrLang
 vntCurrLang = document.all.langselect.value
 Select Case vntCurrLang
 Case "C"
 document.all.cdiv.style.display = ""
 Case "VB"
 document.all.vbdiv.style.display = ""
 Case "J"
 document.all.javadiv.style.display = ""
 End Select
End Sub
Blocked Comments in JScript
Multiline comments in JScript begin with /* and end with */. Large, multistatement comment blocks should be formatted as in the example below.
Example:
function showIt()
 /***
 ** This is a large comment block.
 **
 ** This procedure is called when the user
 ** selects a language.
 **
 ** It displays an appropriate select item
 ** based on their language choice.
 **
 ** The method choices are each contained
 ** in a separate div.
 ***/
{
 var vntCurrLang = document.all
 ...
}
Constant Names
Use all uppercase when naming constants to distinguish them from other elements. An underscore can be used to separate terms when necessary.
Example:
 Const MIN_QUAL = 25
Context Switching
For readability, try to minimize switching between HTML and scripts. When possible, use a few large blocks of script on a page instead of several scattered fragments.
Delimiting Lines of Script
Lines of script should be blocked between a pair of delimiters, which are placed on a separate line, rather than written with delimiters on each line.
Instead of this:
 <% strEmail = Session("Email") %>
 <% strFirstName = Request.Form ("FirstName") %>
 <% strLastName = Request.Form ("LastName") %>
do this:
 <%
 strEmail = Session("Email")
 strFirstName = Request.Form ("FirstName")
 strLastName = Request.Form ("LastName")
 %>
For a single stand-alone line of script, keep the delimiters on the same line as the script.
Example:
 <% strEmail = Session("Email") %>
If the line of script is an ASP output directive (consisting of an equal sign and a variable), do not use a space between the equal sign and the delimiter.
Example:
 <%= strSubscrLName %>
If the line of script specifies an ASP language directive, do not leave a space between the @ and the delimiter. Do not leave spaces around the equal sign.
Example:
 <%@ LANGUAGE=VBScript %>
Indentation
Indentation makes the logical structure of the code more clear.
Once again, place a script consisting of more than one line on a line below the script delimiter, blocking and indenting it two spaces. Place a single-line script on the same line as the delimiter.
Indent everything between ASP delimiters (<% . . . %>) at least two spaces, except procedures (functions and subroutines).
Also indent two spaces:

Each break in logic

Nested statements and HTML elements

The body of a function

The body of a loop from its controlling code
The following examples illustrate some of the indentation rules for scripts written in either VBScript or JScript.
Single-Line Script
<% Dim strLastName %>
Script with Nested Logic
<%
 'This example demonstrates a script with
 'a nested block of logic.
 Dim vntOutput
 Set vntExample = Server.CreateObject("MyComponents.Component.1")
 vntOutput = varExample.Text
 If vntOutput = "" Then
 Response.Write "An error has occurred"
 Else
 Response.Write vntOutput
 End If
%>
Function in VBScript
<%
 Function CalcMortgageRate()
 Statement_1
 End Function
%>
Function in JScript
<%
 //This is an example of a function.
 function calcMortgageRate()
 {
 statement1
 statement2
 }
%>
Language Default
Override the server's default scripting language (VBScript) by using the @LANGUAGE directive. For example, to ensure that the default language is JScript, put the following code at the top of each ASP page:
<%@ LANGUAGE=JScript %>
To use the <SCRIPT> tag for server-side processing, use the RUNAT attribute:
<SCRIPT LANGUAGE="Script Language" RUNAT=SERVER>.
Note that no spaces are used adjacent the equal signs.
Layout Order of Scripts
The following list summarizes the recommended layout of scripts in an .asp file, proceeding from top to bottom on the page. Well-ordered scripts produce more readable pages and, in some cases, cleaner execution. The list applies to both VBScript and JScript unless otherwise noted.

Specify the language.

Use the Option Explicit statement (VBScript only).

List function library includes.

Declare page-scoped variables.

Assign values to page-scoped variables.

Write HTML and inline scripting.

List functions called by inline scripts.
Layout Order
<%@ LANGUAGE=VBScript %>
<% Option Explicit %>
 <HTML>
 <HEAD>
 <TITLE>Variable Sample</TITLE>
 </HEAD>
 <BODY BGCOLOR="White" topmargin="10" leftmargin="10">
 <!-- Display Header -->
 Variable Sample

 <HR>
 <H3>Integer Manipulation</H3>
 <%
 'Declare variable.
 Dim intVariable
 'Assign the variable an integer value.
 intVariable = 5
 %>
.
.
.
For VBScript, use Option Explicit to force explicit variable declaration. This prevents misspelled variables from causing unexpected results when the script executes.
To declare a transactional page, add the <%@ TRANSACTION=value %> directive to the first line on the page.
Transactional Page
<%@ TRANSACTION=Required LANGUAGE=VBScript %>
<% Option Explicit %>
<HTML>
 <HEAD>
.
.
.
Object and Procedure Call Names
To distinguish object names and procedure calls from elements such as variables, begin each object name or procedure call with a verb. Use initial capitalization for each term within an object name or procedure call. Table A.1 suggests some naming conventions that could be used to name objects for some typical activities.
Table A.1 Naming Conventions for Objects and Procedures
Name
Function
Example
AddNew
Adds new records
Customer.AddNew
Update
Edits records
Customer.Update
Remove
Deletes records
Customer.Remove
Get
Returns row from database
Customer.GetNewest
List
Returns multiple rows
Customer.ListNew
To specify returns from methods that return information, use From and For with a method or function name.
Name
Function
Example
GetFor
Returns criteria-based row
Customer.GetForName
ListFor
Returns criteria-based multiple rows
Customer.ListForPeriod
Object Naming
Use initial capitalization for each term when naming objects, including built-in objects. Use descriptive names for objects, even though this requires more characters per name.
The following example conforms to this naming convention (“cnn” is the prefix for an ADO connection variable):
 Set cnnSQL = Server.CreateObject("ADODB.Connection")
 Set cnnSQLServer = Server.CreateObject("ADODB.Connection")
These names do not conform:
 Set cnnS = Server.CreateObject("ADODB.Connection")
 Set cnnsql = Server.CreateObject("ADODB.Connection")
Paths, Using MapPath
Consider using the MapPath method instead of literal paths in ASP applications. The ASP Server.MapPath method allows you to physically relocate an ASP application without recoding scripts. This saves program modification and maintenance effort.
Performance is affected slightly, because every time you use MapPath in a script, IIS must retrieve the current server path. Consider placing the result of the method call in an application variable in order to avoid retrieving the server path.
Select Case Statement
For readability and efficiency, use the Select Case statement in place of If . . . Else in order to repeatedly check for the same variable for different values. For example:
 <%
 Select Case intYrsService
 Case 0 to 5
 strMessage = "You have ten days paid leave this year."
 Case 6 to 15
 strMessage = "You have fifteen days paid leave this year."
 Case 16 to 30
 strMessage = "You have twenty days paid leave this year."
 Case 31 to 100
 strMessage = "Will you never leave?"
 End Select
 %>
Spaces in Scripts
To enhance script readability, use spaces before and after operators, such as plus (+), minus (-), and equal (=).
Example:
 intYearsService = intYearCurrent – intYearFirst
Also use spaces after commas, as when passing parameters or declaring more than one variable.
Example:
 Dim intYearsService, intYearCurrent, intYearFirst
Note The use of spaces between arguments in ADO connection strings is invalid and will result in an error.
Statement Styles
Each scripting language has its own conventions for capitalization, indentation, and other style-related characteristics. Since VBScript is case-insensitive, capitalization conventions can be devised to improve readability, as the following suggestions illustrate.
If . . . Then . . . Else . . . End If statements:

Capitalize the first letter of If, Then, Else, and End If.

Indent the statements following If, Then, or Else two spaces.

Put spaces at each end of an equal (=) sign.

Avoid using unnecessary parentheses.
Correct example:
 <%
 If Request("FName") = "" Then
 Response.Clear 'Not required if Response is buffered.
 Response.Redirect "test.html"
 Else
 Response.Write Request("FName")
 End If
 %>
Similarly, capitalize the first letters of function and subroutine statements, and indent their definitions two spaces.
Example:
 Sub SessionOnStart
 Session("MyId") = Request.ServerVariables(. . .)
 End Sub
Avoid underscores.
Example:
 Dim FirstName, LastName
String Concatenation
For the sake of consistency and to achieve the intended interpretation, use the string concatenator (&) instead of a plus (+) sign in VBScript strings.
Instead of this:
 WholeName = FirstName + " " + LastName
do this:
 WholeName = FirstName & " " & LastName
String Function
Use the String(number,character) function to create a character string consisting of repeated characters. For example, to create a string of 12 asterisks:
 Dim strAstString
 strAstString = String(12,"*")
The String() function takes character codes and string expressions as arguments, but is less verbose than the For . . . loop.
Variable Case Values
Keep cases consistent in both variable assignment and logical tests by using UCase() or LCase(). This is especially important when assigning and logically testing HTML intrinsic form controls, such as check boxes and radio buttons.
Variable Declaration
Explicitly declaring variables helps expose errors, such as misspelled variable names. To make code more reliable and readable, use the Option Explicit statement in VBScript.
When you want to use strong variable typing, the logic should be programmed into a component built with a language that supports it, such as Visual Basic 6.0 or Microsoft® Visual J++®. Loosely typed variables (not typed until run time), such as variants in VBScript, can affect performance, especially when mathematical computations are involved.
Variable Names
To make the intended use of a variable clear to others reading your script, use three-character prefixes in lowercase to indicate data type. Even though explicit data typing is not supported in either VBScript or JScript, the use of such prefixes is recommended.
For consistency in naming variables, use initial capital letters in variable names. Do not capitalize prefixes. For example, to denote the data type of the variable named “SwitchOn” as Boolean, use the prefix “bln,” as found in Table A.2, to name the variable “blnSwitchOn”.
Table A.2 Suggested Prefixes for Indicating the Data Type of a Variable
Data Type
Prefix
ADO command
cmd
ADO connection
cnn
ADO field
fld
ADO parameter
prm
ADO recordset
rst
Boolean
bln
Byte
byt
Collection object
col
Currency
cur
Date-time
dtm
Double
dbl
Error
err
Integer
int
Long
lng
Object
obj
Single
sng
String
str
User-defined type
udt
Variant
vnt
To keep variable name lengths reasonable, use standardized abbreviations. For clarity, keep abbreviations consistent throughout an application or group of related applications.
Instead of:
 strSocialSecurityNumber
use:
 StrSSN
Variable Value Trimming
Be consistent when trimming values. Trim numeric values to the desired length before putting them in state. This will eliminate errors in processing caused by inconsistencies in trimming schemes. For example, a value such as 9.997 used repeatedly as a multiplier would accumulate a different result than the trimmed value 9.9. Trim unneeded leading and trailing spaces from strings by using LTrim, RTrim, or Trim, to eliminate the possibility of a space causing a processing error or a display misalignment.
HTML Standards
ASP applications serve dynamic information in standard HTML format, allowing you to customize information for an audience that uses a wide range of browsers.
Supporting Text-Only Browsing
Many users browse the Web in text-only mode in order to speed up the display of information to their browsers. To ensure that you present as much content as possible to these users, take the following steps to support text-only display:

Include text-only navigation objects, such as menus.

Include the alternative (ALT) parameter with each image tag to provide information about images.
For example:

When providing client-side image maps, add a text-only list of the mapped areas, with links to the information that would have been loaded if the user had clicked on a map link.
Checking HTML Files
You should check and debug your HTML code, using either a dedicated HTML checker or an HTML editor that has code-checking features. Choose an editor that helps enforce your HTML version standard. Check each new HTML file as it is developed. Then debug your files again each time after they are modified.
To debug a page that contains scripts
 1.
Run the page that contains scripts.
 2.
View the source.
 3.
Save the output, which is pure HTML.
 4.
Run the saved output through an HTML checker.
This process is especially important for scripts in ASP pages that include forms. In these cases, HTML errors might corrupt the browser collection values sent from the browser to the server, causing a run-time error.
Using the 216-Color Palette
Color palette mismatches are ever-present concerns when you are creating images for a multiplatform Web. Even images in formats that require compact palettes, such as GIF (256 colors maximum), often display disparate colors when viewed on different platforms, such as Macintosh operating system, Windows 95, and UNIX.
To ensure that your images display the same colors, regardless of browser or platform, use the browser-safe, 216-color palette (also called the safety palette or the 6x6x6 palette). This palette allows nearly as many colors to be viewed as a GIF image can display, and displays them consistently across different systems.
For more information about the browser-safe palette, see http://webdesign.miningco.com/msubcolor.htm. Alternatively, enter “216 color palette” into the search field of any popular Web search engine.
Designing for Small Screens
Small-screen formats are still the standard for many users. Although larger formats are making progress, even 800 x 600 pixels is too large to fit on millions of displays. For example, there are millions of older Macintosh-compatible displays currently in use, many of which display a maximum of 640 x 480 pixels.
To accommodate a broad spectrum of users, including those using small screens, design for 640 x 480 pixels. For usability with small screens, keep the average line of text to approximately 12 words.
Displaying Standard Error Messages
To ensure consistency and to make error messages informative, use standard Response.Status values, such as “401 Unauthorized – Logon failed” and other IIS standard responses in your pages. For more information about how to customize error messages, see the IIS 5.0 online product documentation.
Using Object Statements with Embed Statements
To effectively deliver interactive objects to multiple browser types, write for browsers that do not support the HTML <OBJECT> tag.
To script the use of interactive objects, Microsoft® ActiveX® controls, or Java applets in HTML pages designed for a wide range of browsers:

Use the <OBJECT> tag to place the object on the page.

Add the <EMBED> tag for browsers that do not support the <OBJECT> tag.

Add a display object using the <NOEMBED> tag for browsers that cannot “play” the object.
The following example places a ShockWave control onto a page, and provides for the contingencies just mentioned.
 <OBJECT ID="ShockedPMDauntless"
 CASSID="clsid:59CCB4A0-727D-11CF-AC36-00AA00A47DD2"
 CODEBASE="http://fabrikam.microsoft.com/marketing/movers/ . . . "
 WIDTH=180 HEIGHT=120>
 <PARAM NAME="swURL" VALUE="dauntless.dcr">
 <EMBED SRC="dauntless.dcr" ALT="Movie of Fabrikam Dauntless model in action"
 WIDTH=180 HEIGHT=120>
 </EMBED>
 <NOEMBED>
 <IMG SRC="dauntless.gif" ALT="Picture of Fabrikam Dauntless model in action"
 WIDTH=180 HEIGHT=120>
 </NOEMBED>
 </OBJECT>
Scripting for Performance
Object and Variable Initialization
The following information will help you to initialize and set dimensions for objects and variables, in order to achieve faster execution and efficient use of server resources. Unless stated otherwise, VBScript is assumed.
Scoping Variables
Using Page Scope for Best Performance
Local variables reside within functions and subroutines. Give page scope (also called local scope) to variables unless you have a compelling reason to use a broader scope. For example, you might want to assign session scope to a variable that is used in more than one script in a user session. Local variables are compiled into table entries. At run time, references to local variables are resolved with fast-executing table lookups, giving local variables faster performance than global variables.
Using Global Variables Sparingly and Efficiently
Global variables are resolved at run time, and execute much more slowly than local variables. An undeclared global variable is the slowest, requiring a search of the entire variable list the first time it is used. When you need to give global scope to variables, declare them using the Dim statement before using them. This saves valuable time on first use by eliminating a search of the entire variable list.
Avoiding the Use of Public Variables
Do not use variables defined as Public. The Public keyword is under review to determine future use. Use Dim instead.
Using Application Scope for Objects
Information stored in variables with application-wide scope is in memory and is cached for access by any page in the application. Give application scope to variables used often within an application, if the values do not change frequently.
Whatever the potential benefits, use caution in deciding whether or not to give application scope to an object. It can potentially affect performance and decrease reliability (your application could stop responding). To get the best performance using objects with application scope, set threading at BOTH.
Avoiding the Use of Server Variables
It is a best practice to avoid using server variables if your application does not need them. Whenever your ASP application accesses a server variable, your Web site makes a request that retrieves the server’s entire variable collection—not just the variable to be used. This causes a performance hit the first time a server variable is used. You can enforce this restriction by setting the ENABLESESSIONSTATE directive to FALSE.
Declaring Objects with the <OBJECT> Tag
For objects that may or may not be used in an application, it’s often most efficient to declare the objects without creating them until they are referenced. To declare an object without actually creating it, use the <OBJECT> tag on the page instead of Server.CreateObject().
The PROGIDs used by Server.Create.Object() do not force unique names, and thus create the possibility of name collisions. The <OBJECT> tag uses Class IDs, which are unique and tend to eliminate name collisions.
Also, the <OBJECT> tag is supported in Global.asa and can be used to define scope using SCOPE=Session.
Minimizing Re-Dimensioning of Arrays
When working with arrays, try to avoid the use of the Redim statement. When it is feasible, set the dimension of an array to its maximum size requirement, then leave it at that size. This might not work if memory constraints prevent you from permanently setting a huge array, or several arrays, at maximum. However, every time you Redim an array, your application will take a performance hit, especially when using the Preserve keyword.
In the following example, the Dim and Redim statements are used inefficiently:
 <%
 Dim SomeArray ()
 Redim SomeArray (3)
 SomeArray (0) = "yes"
 SomeArray (1) = "no"
 SomeArray (2) = "maybe"
 .
 .
 .
 'Code executes happily with the current array
 'but then the program needs a bigger array.
 Redim Preserve SomeArray (8)
 SomeArray (3) = . . .
 .
 .
 .
 %>
If the array had been dimensioned at 8 to begin with, some memory would have been wasted, but there would have been a gain in speed.
Using The Dictionary Object for Lookup
The VBScript Dictionary object enables fast lookup of arbitrary key/data pairs. Because the Dictionary object gives you access to array items by key, it is fast for finding items that are not in contiguous memory, since you are specifying a key, rather than knowing where in the array the item is located.
Use the Dictionary object when you have set a high priority on fast searches of nonlinear data.
Using the ENABLESESSIONSTATE Directive
Using the ENABLESESSIONSTATE directive (set in Internet Services Manager) for your site enables the detailed tracking of user requests.
In order to save those resources that IIS uses to process scripts for pages not using session state information, set the ENABLESESSIONSTATE directive to FALSE for those pages:
 <%@ ENABLESESSIONSTATE=False %>
Working with Connections
ODBC Connection Pooling
One of the potential bottlenecks in ASP application performance is connection management. If not managed properly, the opening and closing of connections can occur so frequently that reduced server performance will result. Microsoft® Windows® 2000 Server features built-in support for connection pooling; this reuses existing connections optimally in order to achieve faster application performance and graceful timeout management with less coding effort.
IIS 5.0 automatically manages connection pooling for you.
To use ODBC or OLE DB connection pooling
 1.
Configure the driver for the database to which you are establishing a connection.
 2.
In the Windows 2000 Server registry, check the CPTimeout property to verify that connection pooling is on; let connection pooling handle the connection logic.
 3.
If connection pooling is off, use RegEdit32 to turn it on in the Windows 2000 Server registry.

Caution Do not use a registry editor to edit the registry directly unless you have no alternative. The registry editors bypass the standard safeguards provided by administrative tools. These safeguards prevent you from entering conflicting settings or settings that are likely to degrade performance or damage your system. Editing the registry directly can have serious, unexpected consequences that can prevent the system from starting and require that you reinstall Windows 2000. To configure or customize Windows 2000, use the programs in Control Panel or Microsoft® Management Console (MMC) whenever possible.
 4.
Open individual connections—in your ADO code—just before you need data access on each individual page.
 5.
Close connections as soon as data access activities are complete.
 6.
Disconnect stored recordsets by setting ActiveConnection property to Nothing before storing in Session state.
Timing Out Connection Requests
Busy data servers cause slowdowns in ASP database applications that request database connections. Use the ConnectionTimeout property of the Connection object. This limits the time your application has to wait in order for a connection request to complete. For descriptions and examples of how to configure the ConnectionTimeout property in the registry, see “Data Access and Transactions” in this book.
Browser Connections and ASP
Browser users often request an ASP page, then move on before the requested page has finished processing. Use the Response.IsClientConnected property to determine the connection status of the target browser. If the target browser is no longer connected, cut off ASP page processing to avoid wasting server resources.
The following ASP page demonstrates the use of the Response.IsClientConnected property to end execution of an ASP application (the code uses many seconds of CPU time, so test it on a system where it will not impact production performance):
 <%@ LANGUAGE="VBSCRIPT" %>
 <%
 Function IsConnectedAfter(Seconds)
 Dim StartTime 'time the function started
 Dim PauseTime 'time the pause loop started
 'Use PerfMon to monitor the CPU cycles on the Web server. You
 'will notice that if you click STOP in the browser, the CPU
 'will settle down sooner than if the loop had continued.
 IsConnectedAfter = True
 StartTime = Now
 Do While DateDiff("s", StartTime, Now) < Seconds
 PauseTime = Now
 Do While DateDiff("s", PauseTime, Now) < 1
 'Do Nothing.
 Loop
 Response.Write "."
 If Response.IsClientConnected = False Then
 IsConnectedAfter = False
 Exit Function
 End If
 Loop
 End Function
 %>
 <HTML>
 <HEAD>
 <META NAME="GENERATOR" Content="Microsoft Visual InterDev 1.0">
 <META HTTP-EQUIV="Content-Type" content="text/html; charset=iso-8859-1"> <TITLE>Document Title</TITLE>
 </HEAD>
 <BODY>
 <H1>!!! WARNING !!!</H1>
 <P>This page has code in it that may use 100% CPU cycles for at least 30 seconds. Do not run this code on a production server.
 Restrict its use to a test server.
 <P>Use SysMon to monitor the CPU cycles on the Web server. Press STOP in the Web browser, and you will see that the CPU cycles will settle down sooner than they would have without checking the IsClientConnected property.
 <HR>
 <%
 If IsConnectedAfter(30) then
 Response.Write "<P>The client is still connected</P>"
 Else
 'The browser is no longer connected. This would be a
 'good place to abort any transactions, clean up any
 'variables, and so forth.
 End If
 %>
 </BODY>
 </HTML>
IsClientConnected will only work if Response is buffered.
Visual Basic Applications as DLLs
When you convert Visual Basic applications for use in ASP, they should be run as DLLs (components), rather than being converted to VBScript. Visual Basic DLLs will generally run more efficiently than scripts written in any other scripting language. Encapsulate the Visual Basic code in DLLs and create them in your ASP pages by using <OBJECT> tags or Server.CreateObject().
You should use Visual Basic 6.0 to create an ActiveX DLL that has its project properties set to run in Unattended Mode, Apartment Model Threaded, and Multi-instance.
Additional Resources
The following Web sites and books provide additional information about IIS 5.0 and about other features of Windows 2000 Server, as well as information about best practices for ASP.
Web Links
http://msdn.microsoft.com
The Microsoft Developer Network provides up-to-date resources on ASP as well as associated technologies for Web application developers.
http://www.15seconds.com
The site deals exclusively with ASP, providing references, focus areas, and newsgroups. Focus areas include learning the basics through specialized topics, such as security, performance, and debugging.
Books
Beginning Active Server Pages 2.0 by B. Francis, J. Kauffman, et al, 1998, Chicago: Wrox Press.
This book introduces the beginner to ASP basics and to scripting in ASP with VBScript.
Professional Active Server Pages 2.0 by A. Homer, A. Enfield, et al., 1997, Chicago: Wrox Press.
Professional Active Server Pages 2.0 fully describes the Microsoft server-side environment, in the context of developing Web applications with ASP. The book covers using and developing components, developing three-tier, data-driven Web applications, and integrating ASP with Internet technologies such as e-mail.
Information in this document, including URL and other Internet Web site references, is subject to change without notice.
