Chapter 25 - Interoperability with UNIX
Microsoft® Windows® 2000 Professional and Microsoft® Windows® Services for UNIX 2.0 allow for complete interoperability with UNIX platforms. Services for UNIX 2.0 is the easiest way to integrate Microsoft® Windows NT® and Windows 2000 into existing UNIX-based network environments. This is accomplished by providing interoperability components that use existing UNIX network resources and knowledge in your organization, and manageability components that simplify network administration and account management.
In This Chapter
Quick Guide to UNIX Interoperability
Overview of Windows 2000 Professional and UNIX Connectivity
Planning and Installing Services for UNIX on Windows 2000 Professional
Configuring Services for UNIX on Windows 2000 Professional
Tools
Troubleshooting
Quick Guide to UNIX Interoperability
This guide can help you determine if a particular section in this chapter contains the information you need to accomplish a specific task.
Review key features of interoperability with UNIX platforms.
Windows 2000 Professional and Services for UNIX 2.0 provide a comprehensive solution for interoperability between Windows 2000 networks and UNIX.

See “Overview of Windows 2000 Professional and UNIX Connectivity” in this chapter.
Plan and install Services for UNIX on Windows 2000 Professional.
Determine which Services for UNIX components should be used for your specific networking environment and understand how to install the components for Windows 2000 Professional.

See “Planning and Installing Services for UNIX on Windows 2000 Professional” in this chapter.
Configure Services for UNIX on Windows 2000 Professional.
Understand how to configure the Services for UNIX components for Windows 2000 Professional.

See “Configuring Services for UNIX on Windows 2000 Professional” in this chapter.
Understand the included UNIX utilities, shell, and commands.
Understand how to use the Korn shell, utilities, and manage your network through Microsoft® Management Console (MMC) snap-ins.

See “Tools” in this chapter.
Recover from common UNIX connectivity-related problems.
Follow the troubleshooting guidelines to recover from problems with connectivity.

See “Troubleshooting” in this chapter.
Overview of Windows 2000 Professional and UNIX Connectivity
Services for UNIX 2.0 provides a set of additional features to Windows NT and Windows 2000 that allows for greater interoperability with existing UNIX servers in the enterprise. Services for UNIX 2.0 provides fully supported and fully integrated interoperability components that allow customers to integrate Windows NT 4.0 and Windows 2000 operating systems into their existing UNIX environments. It also provides manageability components that enable customer organizations to simplify network administration and account management across both platforms.
What's New for Windows 2000 Professional and UNIX Connectivity
The add-on pack Services for UNIX version 2.0 adds to Services for UNIX version 1.0 the following new capabilities:

Two-way password synchronization between Windows NT and UNIX.

Administration of Services for UNIX through Microsoft Management Console (MMC).

Gateway for NFS allows client computers running Microsoft® Windows® 95 or Microsoft® Windows® 98, Windows NT, and Windows 2000 to access NFS shared files.

Network File System (NFS) version 3.0 support.

Network Information Service (NIS) support.

Additional UNIX Utilities support.

Migration wizard to migrate NIS source files to Active Directory™ directory service on a Microsoft® Windows® 2000 Server configured as a domain controller.

Username Mapping Server

ActiveState Perl engine.
Introduction to Windows 2000 Professional and UNIX Connectivity
With the growing adoption of the Windows NT and Windows 2000 operating systems in established UNIX environments, the need for the two platforms to interoperate has increased.
To connect a computer running Windows 2000 Professional to UNIX computers, you need protocols and services that allow the two networking systems to communicate with each other. Windows 2000 Professional uses the Common Internet File System (CIFS) protocol for file and print services. CIFS is an enhanced version of the Microsoft Server Message Block (SMB) protocol. UNIX, however, uses the Network File System (NFS) protocol for file services and, for print services, uses Line Printer (LPR)/Line Printer Daemon (LPD) or personal computer network file system daemon (PCNFSD).
Services for UNIX 2.0 implements a subset of Transmission Control Protocol/ Internet Protocol (TCP/IP) network protocols that enables interoperability of Windows 2000 Professional and UNIX.
Services for UNIX 2.0 provides a set of additional features to Windows NT and Windows 2000 that allow for greater interoperability with existing UNIX servers in the enterprise.
Services for UNIX 2.0 is made up of multiple components that allow you to interoperate Windows 2000 Professional and UNIX in the way that best fits your environment. Table 25.1 lists the components that are included with Services for UNIX 2.0 and provides a description of their capabilities.
Table 25.1 Components in Services for UNIX 2.0
Components
Description
Client for NFS
Enables a computer running Windows NT 4.0 or Windows 2000 to act as a client and access files and directories located on an NFS server.
Server for NFS
Enables a computer running Windows NT 4.0 or Windows 2000 to act as an NFS server so that NFS-enabled client computers can access files and directories on the Windows-based NFS server.
Gateway for NFS
Enables a computer running Windows NT 4.0 Server or Windows 2000 Server to act as an NFS gateway. This enables clients running Windows 95 or Window 98, Windows NT, and Windows 2000 to access exported (shared) NFS files and directories.
Server for NIS
Enables a computer running Windows 2000 Server and configured as a domain controller to function as an NIS server, which maintains databases of administrative information (for example, password and group databases) for UNIX-based computers.
Server for PCNFS
Enables a computer running Windows NT 4.0 or Windows 2000 to act as a PCNFSD server, which provides user authentication services for file access on NFS servers.
Two-way Password Synchronization
Enables the two-way automatic synchronization of passwords between computers running Windows 2000 and UNIX when the user password is changed either on Windows 2000 computer or on UNIX.
Telnet Client
Enables a computer running Windows NT 4.0 or Windows 2000 to access Telnet servers for remote administration.
Telnet Server
Enables a computer running Windows NT 4.0 or Windows 2000 to act as a Telnet server.
UNIX Shell and Utilities
Provides a Korn shell with over 60 popular UNIX utilities and support for PERL scripting.
Username Mapping Server
Parses files from either a PCNFSD server or NIS server from which it provides authentication or mapping to users of Client for NFS.
Planning and Installing Services for UNIX on Windows 2000 Professional
To best integrate Windows 2000 Professional and Services for UNIX 2.0 into your networking environment, you need to understand the capabilities and limitations of the components you install and configure. This section discusses the Services for UNIX components that you can implement when working in the following areas:

File access

Authentication

Account management

UNIX printing
File Access
Client for NFS, Server for NFS, and Gateway for NFS are solutions for file access between computers running Windows 2000 Professional and UNIX. Before installing Services for UNIX 2.0, you need to select the NFS component that best suits your needs.
Client for NFS Client for NFS installed on Windows 2000 Professional allows for file access on an NFS server, generally a UNIX-based computer. Figure 25.1 shows an example of this scenario.
[image: image1.png]Client for NF S

unIx
Files and
directaries

windaws 2000
Professional

Figure 25.1 UNIX File Access Using Client for NFS
Server for NFS Server for NFS can be installed on either Windows 2000 Professional, Windows 2000 Server, or Windows NT. Server for NFS allows NFS-enabled client computers, generally those running UNIX, to access files, as Figure 25.2 illustrates.
[image: image2.png]server for NFs

9

Windows 2000
Professianal

Windows 2000
Server

UNIX client

Figure 25.2 Server for NFS: UNIX File Access
Gateway for NFS Gateway for NFS must be installed on Windows 2000 Server. Gateway for NFS allows clients running Windows 95, Windows 98, Windows NT, and Windows 2000 to access UNIX files without having to install an NFS Client. Figure 25.3 illustrates how Gateway for NFS enables Windows 2000 Server to act as a translator between the CIFS protocol that Windows 2000 Professional uses and the NFS protocol that UNIX uses.
[image: image3.png](Gateway for NFs

Ik
Files and
directaries
Windows 2000
Server

UNIX host
ar client

NFS

Microsoft
client computers
(Windows 2000 Professional)

Figure 25.3 Gateway for NFS Acts As a Translator
Choosing Among Client for NFS, Server for NFS, or Gateway for NFS
Client for NFS provides clients that are running Windows 2000 Professional access to UNIX files on an NFS server. Server for NFS allows Windows NT, Windows 2000 Professional, or Windows 2000 Server to act as an NFS Server. Gateway for NFS allows Windows 2000 Server to act as a bridge between the CIFS protocol used by Windows 2000 Professional–based computers and the NFS protocol used by the UNIX NFS network. To help you decide which component is best suited to your networking environment, read the following lists of details and capabilities for each of the three different NFS components.
Client for NFS

Installs on each Windows 2000 Professional–based computer that needs NFS file access.

Provides access to NFS files on a UNIX NFS network.

Resolves all UNIX path names to follow the Universal Naming Convention (UNC).

Integrates with Server for PCNFS or Server for NIS to provide user authentication.
Server for NFS

Installs on either Windows 2000 Professional or Windows 2000 Server.

Enables Windows 2000 (Professional or Server) to act as an NFS server.

Allows users on computers running NFS client software, generally those running UNIX, to access files on Windows 2000.

Integrates with Server for PCNFS or Server for NIS to provide user authentication.
Gateway for NFS

Installs on Windows 2000 Server.

Provides access to NFS files for computers running Windows 95 or Windows 98, Windows NT, and Windows 2000 Professional without Client for NFS installed.

Acts as a gateway or translator between the CIFS protocol that Windows 2000 Professional uses and the NFS protocol that UNIX uses.
Installing Client for NFS
If you select Client for NFS for file access from an NFS Server, you need to install Client for NFS on each Windows 2000 Professional–based computer that needs access to NFS files.
Note To install Client for NFS, you need administrator rights to the computer running Windows 2000 Professional.
To install Client for NFS from Windows
 1.
Run Services for UNIX Setup.
 2.
Click typical installation.
 3.
Select Client for NFS, and then select run it from my computer.
To install Client for NFS from the command prompt

At the command prompt type:

msiexec /I sfusetup.msi /qb ADDLOCAL=”NFSClient”
Note The preceding command assumes Sfusetup.msi exists in the same directory from which you execute the command. If Sfusetup.msi is in a different directory, include the full path. You can find Sfusetup.msi on the Services for UNIX installation CD.
Whenever you install any of the components from Services for UNIX, the files listed in Table 25.2 are also installed.
Table 25.2 Common Services for UNIX Files
File Name
Description
Location
Cligrps.dll
Object for enumerating Client Groups of NFS Server
<SFU directory>\admin
Clilocks.dll
Object for enumerating locks of NFS Server
<SFU directory>\admin
Listview.lpk
Licensed Package for listview
<SFU directory>\admin
Pcctrl.dll
Object for PCNFSD Administrator
<SFU directory>\admin
Sfuadmin.dll
Services for UNIX snap-in
<SFU directory>\admin
Client.htm, Gateway.htm, Mmain.htm, Nisdmain.htm, Nissmain.htm, Pcmain.htm, Psmain.htm, Server.htm, Tnmain.htm
All .htm files are HTML for administrative UI
<SFU directory>\admin
Agroup.js, Auser.js, Clifiles.js, Cliperf.js, Clisec.js, Gtwmapng.js, Gtwshrng.js, Maintain.js, Maps.js, Nispush.js, Pcgroups.js, Pcusers.js, Psaudit.js, Pshosts.js, Psport.js, Pssec.js, Slaves.js, Srvaudit.js, Srvclgrp.js, Srvfiles.js, Srvsecur.js, Suser.js, Tnaudit.js, Tnauth.js, Tnsess.js, Tnsvset.js, View.js
All .js files are scripts for administrative UI
<SFU directory>\admin
Table 25.3 lists the files that are installed during the installation of Client for NFS.
Table 25.3 Client for NFS Files
File Name
Description
Location
Gwdll.dll
Gateway network provider
%windir%\system32
Nfsccfg.dll
Client network provider helper
%windir%\system32
Nfsclnt.exe
NFS client
%windir%\system32
Nfscprop.dll
NFS shell
%windir%\system32
Nfsnp.dll
Client network provider
%windir%\system32
Nfsrdr.sys
Client redirector
%windir%\system32\drivers
Clinotfy.mof, Cliauth.mof, Clifiles.mof, Cliperf.mof, Clisec.mof
All .mof files are Windows Management Instrumentation (WMI) classes for Services for UNIX administrator
%windir%\system32\wbem
Clinfs.chm, Clinfs_.chm, Gatenfs.chm, Gatenfs_.chm, Mapserv.chm, Mapserv_.chm, Nisserv.chm, Nisserv_.chm, Passynch_.chm, Pcnfsd.chm, Servnfs.chm, Servnfs_.chm, Stuart.chm, Sfushare.chm, Sfuwipro.chm, Svcsunix.chm, Telclin_.chm, Telclint.chm, Telserv.chm, Telserv_.chm, Unixutil.chm, Readme.txt
Help files
<SFU directory>\help
Installing Server for NFS
If you select Server for NFS to enable Windows 2000 Professional or Windows 2000 Server to act as an NFS server, you need to install a copy of Server for NFS on each Windows 2000 Professional or Windows 2000 Server that acts as an NFS server.
Note To install Server for NFS, you need administrator rights to the computer that is running Windows 2000.
To install Server for NFS from Windows
 1.
Run Services for UNIX Setup.
 2.
Click typical installation.
 3.
Select Server for NFS, and then select run it from my computer.
To install Server for NFS from the command prompt

At the command prompt type:

msiexec /I sfusetup.msi /qb ADDLOCAL=”NFSServer, NFSServerAuth”
Note To use the preceding command, Sfusetup.msi must exist in the same directory from which you execute the command. If Sfusetup.msi is in a different directory, include the full path. You can find Sfusetup.msi in the i386 directory on the installation CD.
Table 25.4 lists the files that are installed during the installation of Server for NFS.
Table 25.4 Server for NFS Files
File Name
Description
Location
Dsctrnm.h
Performance counter data
<SFU directory>\nfs
Dsctrs.dll
Performance counter
<SFU directory>\nfs
Dsctrs.ini
Performance counter
<SFU directory>\nfs
Monitor.lst
Status monitor data
<SFU directory>\nfs
Nlm.lck, Pend.lck, Share.lck
NLM data
<SFU directory>\nfs
Rpcinfo.exe
Remote procedure call (RPC) information
<SFU directory>\common
Sfueula.txt
End-User License Agreement for Services for UNIX
<SFU directory>\common
Sfumgmt.msc
MMC Console for Services for UNIX Admin Snap-in
<SFU directory>\common
SfuWbem.dll
Wrapper for Microsoft® ActiveX® Objects
<SFU directory>\common
Showmnt.exe
Showmount utility
<SFU directory>\common
Style.css
Cascading style sheet for admin HTML pages
<SFU directory>\common
Tnadmin.exe
Command Line Administration for Telnet
<SFU directory>\common
Sfuhelp.gif, Sfurefr.gif, Sfusave.gif
Images in Services for UNIX Admin
<SFU directory>\common
Gwdll.dll
Gateway network provider
%windir%\system32
Nfsext.dll
Shell extension
%windir%\system32
Nfssa.dll
Server for NFS authentication
%windir%\system32
Nfssvc.exe
Server for NFS service
%windir%\system32
Nfssvr.sys
Server for NFS driver
%windir%\system32\drivers
Portmap.sys
Portmapper driver
%windir%\system32\drivers
Rpcxdr.sys
RPC driver
%windir%\system32\drivers
Srvaudit.mof, Srvauth.mof, Srvfiles.mof, Srvsec.mof, Srvnotfy.mof
All .mof files are WMI classes for Services for UNIX administrator
%windir%\system32\wbem
Clinfs.chm, Clinfs_.chm, Gatenfs.chm, Gatenfs_.chm, Mapserv.chm, Mapserv_.chm, Nisserv.chm, Nisserv_.chm, Passync.chm, Passync_.chm, Pcnfsd.chm, Servnfs.chm, Servnfs_.chm, Sfuart.chm, Sfushare.chm, Sfuwipro.chm, Svcsunix.chm, Telclin_.chm, Telclint.chm, Telserv.chm, Telserv_.chm, Unixutil.chm
Help files
<SFU directory>\help
User Authentication
When an attempt is made to access NFS resources located on Server for NFS, user name mapping and authentication are performed. During an NFS call, Server for NFS receives a UNIX user identifier (UID) from an NFS client. Server for NFS then uses the mapping server to map this UID to a Windows user name. Server for NFS uses its authentication feature to authenticate the mapped Windows user name. It uses the credentials of the mapped user to access the files and provide them to the NFS client. Thus, only valid UNIX users get access to files stored on Windows-based computers when their access privileges are the same as the corresponding Windows user. Authentication is provided by Server for NFS Authentication, which you must install either on all domain controllers, for validation of domain users, or on the computer running Server for NFS, for validation of local users.
Services for UNIX 2.0 provides the following components, which you can use for authentication of file access on an NFS server.
Server for PCNFS You can install Server for PCNFS on either Windows 2000 Professional or Windows 2000 Server. Server for PCNFS is one option for providing user authentication services when NFS-based clients (Client for NFS or third-party NFS clients) need to access NFS files. Server for PCNFS works with the mapping server. The mapping server can parse files from any PCNFSD server and then provide authentication and mapping to client computers running Client for NFS.
Server for NIS Server for NIS must be installed on a Windows 2000 Server that is configured as a domain controller. Server for NIS allows a Windows 2000 Server that is configured as a domain controller to act as the NIS master for a particular UNIX domain. One service that Server for NIS provides is the capability to authenticate requests for NFS shares.
Note You can also configure a UNIX NIS server to provide authentication for computers that have Client for NFS installed.
Installing Server for PCNFS
If you select Server for PCNFS for authentication, you need to install it on any computer that is running either Windows NT or Windows 2000, which you want to act as a PCNFSD server.
To install Server for PCNFS from Windows
 1.
Run Services for UNIX Setup.
 2.
Click typical installation.
 3.
Select Server for PCNFS, and then select run it from my computer.
To install Server for PCNFS from the command prompt

At the command prompt type:

msiexec /I sfusetup.msi /qb ADDLOCAL=”PCNFSDServer”
Note To use the preceding command, Sfusetup.msi must exist in the same directory from which you execute the command. If Sfusetup.msi is in a different directory, include the full path. You can find Sfusetup.msi in the i386 directory on the installation CD.
Table 25.5 lists the files that are installed during the installation of Client for NFS.
Table 25.5 Server for PCNFS Files
File Name
Description
Location
Pcnfsd.exe
PCNFSD service
%windir%\system32
Kepcnfsd.sys
Kernel-mode component
%windir%\system32\drivers
Portmap.sys
Portmapper
%windir%\system32\drivers
Rpcxdr.sys
RPC/XDR
%windir%\system32\drivers
Pcnotify.mof
WMI class for Services for UNIX admin
%windir%\system32\wbem
Clinfs.chm, Clinfs_.chm, Gatenfs.chm, Gatenfs_.chm, Mapserv.chm, Mapserv_.chm, Nisserv.chm, Nisserv_.chm, Passync.chm, Passync_.chm, Pcnfsd.chm, Servnfs.chm, Servnfs_.chm, Sfuart.chm, Sfushare.chm, Sfuwipro.chm, Telclin_.chm, Telclint.chm, Telserv.chm, Telserv_.chm, Unixutil.chm, Readme.txt
Help files
<SFU directory>\help
Username Mapping Server
The computer on which you install Username Mapping Server can be running either Windows 2000 Professional or Windows 2000 Server. Username Mapping Server depends on either an NIS server or a PCNFSD server to provide the UNIX user information. This UNIX user information is used by Username Mapping Server to map and authenticate users. As Figure 25.4 illustrates, all the NFS components (Client for NFS, Server for NFS, and Gateway for NFS) must first go through Username Mapping Server during the mapping and authentication process.
[image: image4.png]NIS server
(Server for
NIS ar UNIX
NIS server)

Username
Mapping
Server.

PCNFSD server
(Server for PONFS
ar UNIX PCNFSD
server)

Client
far NFS

Windows 2000
Prafessional ar
Windows 2000
Server

Server
far NFS.

8

Windaws 2000
Prafessional ar

Windaws 2000
Server Q

Windows 2000
Server

Windaws 2000
Prafessianal

Gateway
far NFS

Figure 25.4 Username Mapping Server
Username Mapping Server provides two kinds of mappings. The easiest is simple mapping: a UNIX user is mapped to a user with the same user name in the Windows domain and vice versa. Administrators can also configure advanced mapping: a UNIX user is mapped to a user with a completely different user name in a Windows domain and vice versa.
When Username Mapping Server receives a request, it first checks if there is an advanced mapping for the given user and returns the mapping if it finds one. If it does not find such a mapping, it looks for a simple mapping. If it finds such a user, it provides the mapped user.
Note When using Username Mapping Server, you can use Server for PCNFS or Server for NIS from Services for UNIX, or you can use a PCNFSD server or NIS server on a UNIX computer.
Installing Username Mapping Server
If you select Username Mapping Server to map and authenticate your users, you need to install it on any computer that is running Windows NT or Windows 2000 and acting as a mapping server.
To install Username Mapping Server from Windows
 1.
Run Services for UNIX Setup.
 2.
Click custom installation.
 3.
Select Username Mapping Server, and then select run it from my computer.
To install Username Mapping Server from the command prompt

At the command prompt type:

msiexec /I sfusetup.msi /qb ADDLOCAL=”Username Mapping Server”
Note To use the preceding command, Sfusetup.msi must exist in the same directory from which you execute the command. If Sfusetup.msi is in a different directory, include the full path. You can find Sfusetup.msi in the i386 directory on the installation CD.
Table 25.6 lists the files that are installed when you install Username Mapping Server.
Table 25.6 Username Mapping Server Files
File Name
Description
Location
Mapadmin.exe
Mapping utility
<SFU directory>\common
Mapsvc.exe
Mapping server
<SFU directory>\mapper
Clinfs.chm, Clinfs_.chm, Gatenfs.chm, Gatenfs_.chm, Mapserv.chm, Mapserv_.chm, Nisserv.chm, Nisserv_.chm, Passync.chm, Passync_.chm, Pcnfsd.chm, Servnfs.chm, Servnfs_.chm, Sfuart.chm, Sfushare.chm, Sfuwipro.chm, Telclin_.chm, Telclint.chm, Telserv.chm, Telserv_.chm, Unixutil.chm, Readme.txt
Help files
<SFU directory>\help
Password Synchronization
The computer on which you install Password Synchronization can be running either Windows 2000 Professional or Windows 2000 Server. Password Synchronization eliminates the need to enter two different passwords when you log on and access resources from either UNIX or Windows 2000.
Services for UNIX 2.0 allows for two-way password synchronization. For example, if you change the password for a user on Windows 2000 Professional, the password for the UNIX account of that user is automatically synchronized to the same password, and a password change under UNIX causes synchronization of the Windows 2000 password.
Password Synchronization can be used in an environment with or without Windows 2000 Server configured as a domain controller. If you have Windows 2000 Professional–based computers in an environment without a domain controller, then install the Services for UNIX Password Synchronization component on the individual Windows 2000 Professional–based computers. In a Windows 2000 environment with multiple domain controllers, you must install Password Synchronization on each domain controller.
Password Synchronization can synchronize passwords with multiple UNIX-based computers at the same time, instantaneously, and securely. It also provides administrative control over the computers and users who participate in password synchronization. In addition, Password Synchronization interoperates with the Services for UNIX 1.0 single sign-on daemon installed on UNIX-based computers.
Installing Password Synchronization
If you select Password Synchronization, you need to install a copy of Password Synchronization on each Windows 2000 Professional–based computer that needs access to NFS files or on each domain controller in the domain.
You also need to install the single sign-on daemon (SSOD) on the UNIX-based computer with which you synchronize passwords. If you are using NIS, verify that SSOD is installed on the NIS master and that the Ssod.config file is configured with the full path to the Makefile located on the NIS master .
In addition, if you are using shadow passwords, edit the Ssod.config file and set USE_SHADOW equal to 1 (default is 0).
For propagating password changes from UNIX to Windows NT or Windows 2000, you need to install the supplied Windows NT Password Authentication Module (PAM) on UNIX.
To install Password Synchronization
 1.
Run Services for UNIX Setup.
 2.
Click typical installation.
 3.
Select Password Synchronization, and then select run it from my computer.
To install Password Synchronization from the command prompt

At the command prompt type:

msiexec /I sfusetup.msi /qb ADDLOCAL=”Password Synchronization”
Note To use the preceding command, Sfusetup.msi must exist in the same directory from which you execute the command. If Sfusetup.msi is in a different directory, include the full path. You can find Sfusetup.msi in the i386 directory on the installation CD.
Table 25.7 lists the files that are installed when you install Password Synchronization.
Table 25.7 Password Synchronization Files
File Name
Description
Location
Psadmin.exe
No longer required; HTML UI takes over
<SFU directory>\pswdsync
Pswdsync.dll
Ssynchronizes passwords from Windows to UNIX
%windir%\system32
Psync.mof
All .mof files are WMI classes for Services for UNIX administrator
%windir%\system32\wbem
Clinfs.chm, Clinfs_.chm, Gatenfs.chm, Gatenfs_.chm, Mapserv.chm, Mapserv_.chm, Nisserv.chm, Nisserv_.chm, Passynch.chm, Passynch_.chm, Pcnfsd.chm, Servnfs.chm, Servnfs_.chm, Sfuart.chm, Sfushare.chm, Sfuwipro.chm, Svcsunix.chm, Telclin_.chm, Telclint.chm, Telserv.chm, Telserv_.chm
Help files
<SFU directory>\help
Account Management
In an NIS environment, clients and servers are logically grouped together to form a domain. Each NIS domain can have specific parameters for the NIS maps that you configure. The NIS maps are databases that contain the parameters or system information. For example, host names, user names, and passwords are some of the NIS maps.
Server for NIS enables a Windows 2000 Server that is configured as a domain controller to act as the NIS master for a particular UNIX NIS domain. This provides you with the capability to migrate NIS maps and then centrally manage UNIX NIS domains from Windows 2000 Server. The NIS maps that you select to migrate are then migrated into Active Directory. A Windows 2000 Server that is Active Directory–enabled can then act as the NIS master for the specified UNIX domains. For more information about Server for NIS, see Services for UNIX Help.
UNIX Printing
Windows 2000 Professional provides services for printing to and from UNIX resources. There are multiple ways to implement these services; one option, as illustrated in Figure 25.5, is to configure Windows 2000 Professional with Line Printer (LPR), which sends print requests to a print queue on a UNIX host that is configured with Line Printer Daemon (LPD). LPD manages the print queue and sends the print job to the correct UNIX printer.
[image: image5.png]Client for NFS

UNIX host
(configured for LPD)

Windaws 2000
Professional
(configured for LPR) UNIX printer

Figure 25.5 Printing to a UNIX Printer from Windows 2000 Professional
Another option is for Windows 2000 Server to act as an LPR/LPD gateway so that Windows computers without LPR/LPD services can print to a UNIX printer, as shown in Figure 25.6.
[image: image6.png](acting as LPR/LPD gateway)

Windows 2000
Server

UNIX host

Microsoft
elient comput

(Windans 2000 professianal) UNIX printer

Figure 25.6 Printing Through an LPR/LPD Printer Gateway to a UNIX Printer
Another option, as illustrated in Figure 25.7, is to configure a UNIX computer with Line Printer (LPR), which sends print requests to a print queue on a Windows 2000–based computer configured with Line Printer Daemon (LPD). LPD manages the print queue and sends the print job to the correct Windows 2000 printer.
[image: image7.png]Windows 2000 UNIX h
printer (Labiidired for LpR)

Windaws 2000
(configured for LPD)
LPR/LPD

Figure 25.7 Printing to a Windows 2000 Printer from UNIX
Configuring Services for UNIX on Windows 2000 Professional
There are different ways to implement the components included with Services for UNIX on Windows 2000 Professional. One scenario is to implement Services for UNIX on Windows 2000 Professional–based computers in an environment without Windows 2000 Server. To do this, install and configure the following Services for UNIX components: Username Mapping Server, Client for NFS, and Password Synchronization. Then, install and configure LPR printing on each of the Windows 2000 Professional–based computers. With these components installed on Windows 2000 Professional, you can now be authenticated and access NFS files on UNIX computers, synchronize passwords, and print to a UNIX printer from Windows 2000 Professional. In this scenario, Username Mapping Server depends upon a UNIX NIS server or a UNIX PCNFSD server. Figure 25.8 illustrates this scenario.
[image: image8.png]NIS server or
PCNFSD server

S

(configured for LPD)

Client for NFS
Password synranization
Username Mapping Server

9

Windaws 2000
Professional
(configured for LPR)

UNIX host

NI printer

Figure 25.8 Scenario I
Another scenario for implementing Services for UNIX on Windows 2000 Professional–based computers is to install and configure Client for NFS, Password Synchronization, and LPR printing on each of the Windows 2000 Professional–based computers. Then, for the ability to migrate UNIX NIS maps into Active Directory, install Server for NIS on Windows 2000 Server (configured as a domain controller). With these components installed on Windows 2000 Professional and Windows 2000 Server, you can authenticate users on your network, grant access to NFS files on UNIX computers, synchronize passwords, and print to a UNIX printer from Windows 2000 Professional. Figure 25.9 illustrates this scenario.
[image: image9.png]

Figure 25.9 Scenario II
For user authentication and mapping in both of the preceding scenarios, you can use either Server for PCNFS or Server for NIS components from Services for UNIX, or PCNFSD server or NIS server on a UNIX computer.
The Services for UNIX components that are used in the preceding scenarios and that you can install on Windows 2000 Professional (Server for PCNFS, Client for NFS, Password Synchronization, and Username Mapping Server) are described in greater detail in the following sections.
Configuring Server for PCNFS
When configuring Server for PCNFS on Windows 2000 Professional, you have the ability to define both users and groups. The users and groups that you define when you configure the Server for PCNFS, must already be defined on the UNIX hosts from which you access files. If you do not know the user name, user identifier (UID), or group identifier (GID), you can acquire this information from the UNIX host. For more information about how to determine the user name, UID, and GID, see your UNIX software documentation.
To access Server for PCNFS
 1.
Click the Start button, point to Programs, and then click Windows Services for UNIX.
 2.
Click Services for UNIX Administration.
 3.
Double-click Server for PCNFS.

You can configure Server for PCNFS from this screen.
Configuring Client for NFS
When configuring Client for NFS on Windows 2000 Professional, you only need to know the name of the mapping server that you use for authenticating and mapping users.
You can use Nfsadmin.exe, a command-line utility, for configuration and administration of Client for NFS. Nfsadmin uses the following syntax:
nfsadmin client computer-name option=value
where client indicates that you want to configure the NFS Client and computer-name is the name of the computer which is running the NFS Client.
Table 25.8 lists the command-line options that you can use with Nfsadmin to configure Client for NFS.
Table 25.8 Nfsadmin Command-Line Options
Option
Value
mapsvr
Computer name of the mapping server.
preferTCP
YES or NO, to indicate whether to use TCP.
mtype
HARD or SOFT, to indicate the type of mount.
retry
Number of retries for a soft mount. The default value is 5.
timeout
Time-out, in seconds, for an RPC call.
perf
MANUAL or DEFAULT, to indicate the method of determining performance parameters.
rsize
Size of the read buffer, in kilobytes.
wsize
Size of the write buffer, in kilobytes.
fileaccess
UNIX file permissions for reading, writing, and executing. For more information about UNIX file permissions, see Services for UNIX Help.
To access Client for NFS
 1.
Click the Start button, point to Programs, and then click Windows Services for UNIX.
 2.
Click Services for UNIX Administration.
 3.
Double-click Client for NFS.

You can configure Client for NFS from this screen.
After you configure Client for NFS, you can mount files directly from UNIX hosts in Windows 2000 Professional by using either Windows Explorer or the command prompt.
To access NFS Files and Directories with Windows Explorer
 1.
In Windows Explorer, double-click My Network Places.
 2.
Double-click Entire Network.
 3.
Double-click NFS Network.
 4.
Double-click the appropriate NFS LAN, for example, Default LAN.

A list of available NFS servers appears.
 5.
Double-click the appropriate NFS server.

A list of exported NFS shares appears.
 6.
Select the file and/or folders you want to open.
Note When you attempt to access NFS files and directories from Windows 2000 Professional and do not see any NFS volumes available, it is likely that the NFS directories and files have not been configured to be exported on your UNIX host. Refer to your UNIX documentation for more information about exporting NFS directories and files.
Note If your user name exists in the authentication domain (PCNFSD/NIS), you are able to access the NFS resources with proper credentials. If your user name does not exist in the NIS/PCNFSD domain, you must access the resources as an anonymous user. However, you can change logon credentials by selecting Connect using a different user name. You can then provide the NIS/PCNFSD credentials you want to use to access Server for NFS.
To access NFS Files and Directories from the Command Prompt

At the command prompt, type the following command:

mount [switches] [network path] [drive | *]

where switches is one or more of the switches listed in Table 25.9, network path is the network path to the NFS volume you want to mount, and drive is the drive letter to assign to the mounted volume (asterisk indicates the next available letter).
Table 25.9 Mount Parameters and Descriptions
Switches
Description
-u:[user name] [password | *]
User name and password are the user name and password to use for mounting the NFS volume. If you use an asterisk for password, you are prompted for the password.
-o rsize=n
Size of the read buffer, in kilobytes.
-o wsize=n
Size of the write buffer, in kilobytes.
-o timeout=n
Time-out for NFS connections, in tenths of a second.
-o retry=n
Number of times to attempt a soft mount. Default value is 5.
-o mtype=[soft | hard]
Specify soft or hard mount.
-o anon
Mount as anonymous user.
-o nolock
Disable locking. This option improves performance if you only need to read files.
-o EUC
Enable extended UNIX code set (EUC).
Configuring Password Synchronization
When configuring Password Synchronization on Windows 2000 Professional, you need to specify the name of the Windows 2000 computer that is running the Password Synchronization service. You also need to know the name of the UNIX host with which you synchronize passwords.
To access Password Synchronization
 1.
Click the Start button, point to Programs, and then click Windows Services for UNIX.
 2.
Click Services for UNIX Administration.
 3.
Double-click Password Synchronization.

You can configure Password Synchronization from the Password Synchronization dialog box.
Note It is also necessary to verify that the single sign-on daemon (SSOD), which is on the UNIX host where you synchronize passwords, is installed and configured correctly. For more information about SSOD, see “Installing Password Synchronization” earlier in this chapter.
Configuring Username Mapping Server
When configuring Username Mapping Server on Windows 2000 Professional, there are two ways to specify how mappings can occur. Username Mapping Server allows either simple user maps or advanced user maps.
With simple user maps, the accounts with the same user name in the Windows domains and the UNIX domains are mapped. You can use either a PCNFSD server, where password and group files reside, or an NIS server for authentication. This is true for both simple and advanced user maps; you only need to know the name of the authentication server.
Advanced user maps do not require that the user names match. When using advanced user maps, you only need to know the name of the Windows domain and the UNIX domain for the users that need service from Username Mapping Server. After you enter the correct names, a listing of defined users in each domain is displayed from which you can map users between both domains.
Configuring LPR Printing
To print to a remote UNIX printer configured with Line Printer Daemon (LPD), you must first configure Windows 2000 Professional to print with Line Printer (LPR). Do this by installing Print Services for UNIX and installing and configuring a print driver to print with LPR as the printer port.
To install Print Services for UNIX
 1.
In Control Panel, double-click the Network and Dial-up Connections icon.
 2.
On the Advanced menu, click Optional Networking Components.
 3.
In the Components list, click Other Network File and Print Services, and then click Details.
 4.
Click Print Services for UNIX, and then click OK.
To add an LPR port
 1.
In Control Panel, double-click the Printers icon.
 2.
Double-click Add Printer, and then click Next.
 3.
Click Local printer, clear the Automatically detect my printer check box, and then click Next.
 4.
Click Create a new port, and then click Standard TCP/IP Port.
 5.
Click Next, and follow the instructions on the screen to finish installing the TCP/IP printer.
Tools
Services for UNIX allows for central management of all included components. Services for UNIX also provides UNIX utilities and a Korn shell to automate common processes across Windows NT, Windows 2000, and UNIX platforms using scripts.
Network Management
Because all the Services for UNIX components are integrated into Microsoft Management Console (MMC) as snap-ins, you can centrally manage them from a computer running Windows 2000 Professional.
To access Services for UNIX Components
 1.
Click the Start button, point to Programs, and then click Windows Services for UNIX.
 2.
Click Services for UNIX Administration.

You can configure all the Services for UNIX components from this window.
UNIX Shell
Services for UNIX 2.0 includes an implementation of the Korn shell. The shell is a command language interpreter that acts as the interface to the UNIX operating system. The shell interprets commands, calls the appropriate program, and returns standard output. Many shells also provide a high-level programming language that you can use to accomplish complex tasks by combining basic utilities and functions provided by the operating system.
The Korn shell, developed by David Korn at AT&T, combines many of the desirable features of the C and Bourne shells. The Bourne shell, developed at AT&T by Steven Bourne, was the first UNIX shell. The Bourne shell provides a powerful programming language. The C shell, another UNIX shell, provides a number of features not available with the Bourne shell, such as command aliases, a command history mechanism, and job control of command processing. Table 25.10 provides a feature summary of these three common shells.
Table 25.10 Shell Feature Summary
Features
Bourne
C
Korn
Command alias

X
X
Command history

X
X
Command-line editing

X
Job control

X
X
Shell scripting
X
X
X
Other shells are available for the UNIX operating system. Bash (Bourne Again shell) is an extension of the Bourne shell that incorporates features of both the Korn and C shells and is common on Linux systems. Tcsh is an extended version of the C shell that includes command completion, a command-line editor, and enhanced history manipulation.
Using the Korn Shell
The implementation of the Korn shell included with Services for UNIX differs from the standard UNIX Korn shell in the following ways:

Semicolons are used instead of colons to separate entries in the PATH variable.

Current directory in PATH is referred to as ;; or ;.; instead of period (.).

Startup file is called Profile.ksh instead of .profile.

Startup file for systemwide environment variables is called /etc/profile.ksh instead of /etc/profile.

History file, which stores the command history of a user, is called Sh_histo file instead of Sh_history.

Partial job control enables running of jobs in the background by using the ampersand (&) on the command line.
If your system administrator sets up the Korn shell as your default shell in Telnet Server, it is the shell you log in to when accessing a Services for UNIX server by means of Telnet. If you want to use the Korn shell without logging on to it, you can access it by using the sh command (ksh in standard UNIX).
Environment Variables
A variable consists of a name and its assigned value. You can define variables and use them in shell scripts. Other variables, called shell variables, are set by the shell. A variable name can contain letters, numbers (but not as the first character), and the underscore. The equal sign with no spaces on either side is used to assign a value to the variable. Once a variable is defined, you must use the export command to make the value of the variable available to other processes running under the shell.
The Korn shell runs the Profile.ksh file when you log on. The Profile.ksh file is used to set user-specific environment variables and terminal modes. (The system administrator can also use /etc/profile.ksh to set variables systemwide for all user accounts on the system.) Some of the variables that you can use in Profile.ksh include PATH, HOME, VISUAL, EDITOR, SHELL, HISTSIZE, HISTFILE, PS1, PS2, CDPATH.
Table 25.11 lists many of the environment variables used by the Services for UNIX Korn shell. For a complete list of the shell variables supported by the Services for UNIX Korn shell, see Services for UNIX Help under the topic sh.
Table 25.11 Korn Shell Environment Variables
Variable Name
Description
_
Expands to the argument of the previously executed command.
CDPATH
Defines the search path used by the cd command.
COLUMNS
Defines the width of the output display for programs that read the value; for example, the text editor vi.
EDITOR
Specifies a default editor for the system to call when no editor is specified.
ENV
Performs parameter substitution on the value if ENV is set. When the shell is invoked, the named file runs first.
ERRNO
Displays the value set by the most recently failed subroutine.
FIGNORE
Contains a pattern that defines which files are ignored during file expansion.
FCEDIT
Displays the editor for the fc command.
HISTFILE
Displays the absolute path of the file (default.sh_histo) that contains the command history.
HISTSIZE
Displays the number of commands in the history file.
HOME
Contains the absolute path of your home directory, which becomes your current directory when you log on.
IFS
Contains the characters used as internal field separators.
LINENO
Displays the number of the line from standard input that the shell script is currently executing.
LINES
Defines the number of output lines used by the select statement when printing its menu. Select writes specific words to standard error.
MAIL
Contains the absolute path of the file where your mail is stored.
MAILCHECK
Defines the number of seconds the shell waits before checking for new mail.
MAILPATH
Contains the mailbox files where new mail notification is sent.
OLDPWD
Displays the path of the previous working directory.
PATH
Defines the absolute paths of the directories where the shell searches for executable files.
PPID
Displays the process ID of the parent of the shell.
PS1
Contains the prompt displayed by the shell. The default Korn shell prompt is $. Other options exist.
PS2
Contains the secondary shell prompt.
PWD
Contains the path of the current working directory.
RANDOM
Generates a random number.
REPLY
Contains user input from the select statement.
SHELL
Defines the absolute path of the current shell. Is used by commands to invoke the shell.
TMOUT
Defines the number of seconds the shell remains inactive before it terminates.
VISUAL
Specifies a default editor that overrides the EDITOR variable.
Metacharacters
The Korn shell recognizes a special meaning for certain characters. When a regular expression contains a metacharacter, the Korn shell interprets the character as shown in Table 25.12.
Table 25.12 Korn Shell Metacharacters
Character
Meaning
\
Escape character. When immediately preceding another character, it removes the special meaning from that character.
*
Wildcard match for zero or more characters.
?
Wildcard match for one character.
[]
Wildcard match for the characters specified within the brackets.
<
Redirects standard input so that it comes from a specified file instead of the terminal.
>
Redirects standard output so that it goes to a specified file instead of the terminal.
>>
Appends standard output to the end of a specified file.
|
Connects the standard output of one command to the standard input of another command.(Called the Pipe.)
&
Causes a process to run in the background when it is appended to a command line.
~
Represents the path of a user's home directory.
.
Current directory.
..
Parent to the current directory.
$1 - $9
Represents the first nine arguments in a command.
/
Root directory.

Takes a string literally. Variable substitution allowed.

Takes a string literally. Variable substitution allowed.
`
When back quotes precede and follow a command string, tells the shell to run the command and use the output in place of the string.
()
Groups commands together for execution.
;
Separates commands on a command line.
newline (ENTER)
Starts command execution.
Shell Commands
When you enter a command at the shell prompt, the shell evaluates the command, makes substitutions for variables and aliases, and then runs the command.
The basic structure of a command is as follows:
command-name argument1 argument2 >file-name
Commands can take options, which modify the action of a command. For example, ls lists the contents of a directory but does not include the hidden (.) files. Use ls -a to also see the hidden files.
The shell processes the command after you press ENTER. Commands can also be separated by semicolons and entered on a single line; the commands on the line are not processed, however, until after you press ENTER.
When the shell runs a command, it starts a process. Each process has a process ID (PID), which is used to access the process. Processes can be run in the foreground or the background and can also be suspended or cancelled. Parent processes fork child processes, which are assigned their own PIDs.
A command receives standard input from the terminal and sends standard output and standard error to the terminal.
You can redirect the standard input from the terminal to a file as follows:
command-name < file-name
You can also redirect the standard output from the terminal to a file as follows:
command-name > file-name
You can append it to an existing file as follows:
command-name >> file-name
In addition, you can redirect the standard error to a file as follows:
command-name 1>file-name1 2>file-name2
The standard output is sent to file-name1 and the standard error is sent to file-name2.
You can use pipes to connect the standard output of one command to the standard input of another command as follows:
command-name | command-name >file-name
The Services for UNIX Korn shell is a programmable shell that supports the following structured commands, as shown in Table 25.13. For a complete list of supported shell commands, see Services for UNIX Help under the topic sh.
Table 25.13 Shell Programming Services for UNIX Korn Shell
Command
Use
case
Runs commands based on a particular setting of another variable.
for
Runs a specific list of commands.
if
Specifies conditions in a script.
select
Writes specified words to standard error.
until
Runs a list of commands until a zero value is returned.
while
Runs a list of commands while a certain condition is true.
The Services for UNIX Korn shell has built-in commands. Built-in commands are run by the shell’s own process. Table 25.14 lists the built-in commands that are available with the Services for UNIX Korn shell. For details about each command, see Services for UNIX Help.
Table 25.14 Services for UNIX Korn Shell Built-in Commands
Command
Description
.
Runs a shell file in the current environment.
:
Expands arguments. Returns an exit status of 0 (success).
alias
Assigns a new name to a command.
break
Exits from a for, while, or until loop.
cd
Changes the current working directory.
continue
Resumes with the next iteration of a for, while, or until loop.
echo
Displays its arguments to standard output.
environ
Standard environmental variables.
eval
Scans and runs the specified command.
exec
Runs the specified command without creating a new process.
exit
Exits the shell.
export
Makes the value of the variable available to child processes.
false
Returns an exit status of 1 (failure).
fc
Selects specified commands from command history.
getopts
Parses command line options.
jobs
Displays current jobs.
kill
Ends the specified job.
let
Evaluates the expression.
print
Displays arguments from the shell.
pwd
Displays the current working directory.
read
Reads one line from standard output.
readonly
Makes the value of the variable read-only so it cannot be changed.
return
Exits a function.
set
Sets shell flags or command line argument variables.
shedit
Interactive command and history editing in the shell.
shift
Promotes each command line argument (for example, $3 to $2).
shpc
Features of Korn shell specific to Windows NT.
test
Checks for the properties of files, strings, and integers, and returns the results of the test as an exit value.
time
Displays run time and CPU time.
times
Displays the user program and system times accumulated by the shell.
trap
Specifies commands to run at a signal.
true
Returns exit status of 0 (success).
type
Identifies a name as interpreted by the shell.
typeset
Sets attributes and values for shell parameters.
umask
Changes access permissions.
unalias
Removes an alias.
unset
Removes a variable definition from the environment.
wait
Waits for a child process to terminate.
whence
Describes how the shell interprets a command name (as a function, shell keyword, command, alias, or executable file).
Command Aliases
For commands and command-line options, you can assign an alias or name that the shell translates to another name or string. (Be sure to choose an alias that is easy to remember.) The shell substitutes the command and options for the alias you enter. Creating an alias at the command line makes the alias available in the current shell environment. To make the alias a part of the work environment, add the following line to the shell start-up file (.kshrc) that defines the alias and exports it:
alias newname=command -option; export newname
The command alias -x exports the alias to the child process only.
To remove an alias, use unalias followed by the alias name:
unalias newname
The Services for UNIX Korn shell provides a set of predefined aliases. For more information about the alias command, see Services for UNIX Help.
Command History
The Services for UNIX Korn shell features a history file, which contains a list of a defined number of executed commands. These commands can be accessed for editing and persist in the file between logon sessions.
You can set the maximum number of commands to be saved in the history file by using the HISTSIZE variable:
HISTSIZE=number; export HISTSIZE
If you do not define this variable, UNIX saves a system-defined number of commands.
You can define the name and location of the history file by using the HISTFILE variable:
HISTFILE=file-name; export HISTFILE
If you do not define this variable, your history file is named .sh_histo and stored in your home directory.
Command Line Editing
You can edit the commands in the history file by using built-in Korn shell editors, such as vi, or the built-in fc command. You can use this feature to correct mistakes or to reuse work you have completed.
To define vi as your default editor:
set -o vi
– Or –
VISUAL=/sfu/shell/vi; export VISUAL
The built-in editor that is provided with the Korn shell offers a subset of the full functionality available with vi. You can access vi to edit a command by entering the command, pressing ENTER, and then typing vi. This allows you to edit a multiline command.
Arithmetic Evaluation
The Services for UNIX Korn shell has a built-in arithmetic expression feature. It supports logical and arithmetic operators. The syntax for arithmetic operators is $((<arithmetic expression>)) or $(<arithmetic expression>). The Korn shell replaces the arithmetic expression with its value, beginning with the innermost nested expression. Table 25.15 lists the operators.
Table 25.15 Arithmetic and Logical Operators
Operator
Description
+
Plus
-
Minus
*
Multiply
/
Divide (with truncation)
%
Remainder
<<
Bit-shift left
>>
Bit-shift right
&
Bitwise and
&&
Logical and
|
Bitwise or
||
Logical or
^
Bitwise exclusive or
!
Logical not
~
Bitwise not
<
Less than
>
Greater than
<=
Less than or equal to
>=
Greater than or equal to
!=
Not equal to
=
Equal to
Shell Scripts
A shell script is a file containing a series of commands that together perform a function. You can access a Korn shell script from the command prompt if you are running the Korn shell and have permission to execute the script by typing the file name. You can also run the shell script if the Korn shell is not running by entering the following command:
sh file-name
Note Windows NT does not execute a script when you invoke it from the command prompt with only a file name; UNIX, however, does execute scripts if you specify the path and file name of the shell on the first line of the script, such as in the following:
#!/bin/sh
You must link each file or file name extension to a program. In particular, .sh or .ksh can be associated with the Korn shell.
Job Control
You can use job control to run a command in the foreground or the background, or to temporarily suspend it. In addition, you can see a list of the commands currently running.
When you enter a command, if it is not a built-in command, the shell forks a new process in which to run the command. The kernel schedules the process and gives it a process ID (PID). The shell keeps track of the process and gives it a job number.
Some processes are run in the foreground: they might be interactive or take only a short time to run. Other processes are better run in the background, especially commands that take a long time to run, such as a large sort. You can move a process to the foreground or the background and get a list of the current jobs. You can also temporarily suspend a process or terminate it.
Table 25.16 lists the job control commands that Services for UNIX supports.
Table 25.16 Job Control Commands
Command
Description
jobs –l
Lists the current jobs. Each job is numbered. The -l option displays the PID.
Command &
Runs the command in the background. For example, sort file-name newfile &
kill job-number
Terminates the job specified by job-number. The job number is displayed when a job is started by using & or the jobs command.
UNIX Utilities
The following UNIX utilities are available in Services for UNIX 2.0.

Table 25.17 lists the new utilities that are available in Services for UNIX 2.0.

Table 25.18 lists the utilities that were previously available in Services for UNIX 1.0 and that are included in Services for UNIX 2.0.

For more information about these commands, see Services for UNIX Help.
Table 25.17 New Utilities in Services for UNIX 2.0
UNIX Command
Description
cron
Schedules tasks.
crontab
Lists scheduled tasks and edits them.
cut
Cuts out bytes, character, or character-delimited fields from each line in one or more files, concatenates them and writes them to standard output..
date
Writes the date and time.
diff
Compares two files and displays line-by-line differences.
du
Prints the disk usage of a file or directory.
kill
Terminates or signals processes.
nice
Invokes a command with a specified scheduling priority.
od
Displays files in specified formats.
paste
Merges corresponding or subsequent lines of files.
perl
Runs Perl programs.
printenv
Prints environment variables that are set.
printf
Writes formatted output.
ps
Lists processes and their status.
pwd
Prints the current working directory.
renice
Reprioritizes a running process.
sdiff
Prints differences side-by-side.
sleep
Suspends execution for a specified interval.
split
Splits a file into pieces.
strings
Finds printable strings in an object or binary file.
su
Becomes another user (or administrator).
tar
Creates tape archives, and adds or extracts files from an archive.
top
Shows top processes sorted by CPU usage.
tr
Translates characters in input stream.
uname
Prints names of the current system.
uudecode
Decodes a text file into a binary file.
uuencode
Encodes a binary file.
wait
Waits for process completion.
which
Locates command and print pathname/alias.
xargs
Constructs argument lists and invoke a utility.
Table 25.18 Utilities in Services for UNIX 1.0
UNIX Command
Description
sh
Invokes the Korn shell.
basename
Removes the path, leaving only the file name. Deletes any prefix ending in / and any suffix from string and prints the result to standard output.
cat
Concatenates and displays a file.
chmod
Changes or assigns the permissions mode of a file.
chown
Changes the owner of a file.
cp
Copies files.
dirname
Delivers all but the last level of the path in a string. See basename.
find
Recursively searches a directory hierarchy, looking for files that match a specified Boolean expression.
grep
Searches files for a pattern and prints all lines containing that pattern.
head
Copies first n lines of specified file names to standard output.
ln
Creates a hard link to a file. Links a file name to a target by creating a directory entry that refers to the target.
ls
Lists the contents of a directory.
mkdir
Creates a named directory with read, write, and execute permission for every type of user.
more
Filters and displays the contents of a text file on the terminal, one screen at a time.
mv
Moves a file name to a target.
rm
Removes an entry for a file from a directory.
rmdir
Removes a directory.
sed
Copies named file names to a standard output; edits according to a script of commands (a stream editor).
sort
Sorts the lines of all named files, groups them, and writes the result to standard output.
tail
Copies a named file to standard output, beginning at a designated place.
tee
Transcribes standard input to standard output and makes copies in a file name.
touch
Updates the access time or the modification time of a file.
uniq
Reports on repeated lines in a file.
wc
Displays a count of lines, words, or characters in a file.
vi
Edits text in a screen-based environment.
perl
An interpreted language that scans text files, extracts information from those files, and prints reports based on that information.
Using vi
The vi editor is an interactive text editor for creating and editing ASCII files. The vi editor requires you to enter a command to perform an action, such as entering text, deleting text, or moving the cursor. You can be in one of two modes when using vi: command mode or input mode. In command mode, you can enter commands to perform such actions as deleting text or moving the cursor in the file. In input mode, you can enter and change text. You enter input mode by entering a specific vi command. You leave input mode by pressing ESC.
This section provides basic information to get you started using vi. After you understand the mechanics of using vi, you can explore its functionality. (The mechanics are simple; the details can seem obscure at first.) For more information about the complete functionality of vi, see any of the available print or online sources, including Services for UNIX Help.
To edit a file by using vi, at the command prompt type:
vi file-name
and press ENTER.
If the file already exists, it appears on the screen. If the file does not exist, vi creates it.
Note You can take advantage of a file recovery feature that is provided with vi. If the system saves a copy of the last saved version of your file in a buffer, you can access that copy of the file by typing vi -r file-name and pressing ENTER.
What you see on the screen is the text of the file (if it exists), a blinking cursor in the left corner of the screen, a column of tildes along the left margin of the file that represent blank lines (if any are in view), and the name of the file in the last line of the screen. (The bottom of the screen is also used to display messages, to show commands you enter that begin with /, ?, !, and :, and to indicate input mode if the showmode option is set.)
To begin entering text, press i (to insert text). You can then begin typing. The text you enter appears, beginning at the position of the cursor. When you are done entering text, press ESC.
To save the file and exit vi, type
:wq
and press ENTER.
Use the colon to escape to the shell so that you can enter a command at the bottom of the screen. Press w to write the file to disk. Press q to quit the vi editor. Table 25.19 provides a summary of the of the commands used for starting and quitting vi.
Table 25.19 Starting and Quitting vi
Command
Description
vi file-name
Edits file-name (this creates a new file or edits an existing one).
vi -r file-name
Recovers a file after a system failure and edits it.
:q
Quits vi if no changes have been made.
:q!
Quits vi without saving changes.
:wq
Writes (saves changes) and quits vi.
As the size of the file increases, you can more easily move throughout the file by using the following commands in command mode, as shown in Table 25.20.
Table 25.20 Moving the Cursor in Command Mode
Command
Description
Spacebar
Moves the cursor forward one character.
Backspace
Moves the cursor back one character.
l
Moves the cursor one character to the right.
h
Moves the cursor one character to the left.
j
Moves the cursor down one line.
k
Moves the cursor up one line.
Ctrl-d
Scrolls down half a screen.
Ctrl-u
Scrolls up half a screen.
Ctrl-f
Scrolls down one screen.
Ctrl-b
Scrolls up one screen.
nG
Moves the cursor to line n.
G
Moves the cursor to the end of the file.
Tables 25.21 and 25.22 list many ways for inserting and changing text that allow for detailed control.
Table 25.21 Input Mode
Command
Description
a
Inserts text after the cursor.
A
Inserts text at the end of the current line.
I
Inserts text before the cursor.
I
Inserts text before the current line.
o
Opens a line in the text below the cursor.
O
Opens a line in the text above the cursor.
Table 25.22 Changing Text
Command
Description
r
Replaces the current character with the next character typed; returns to Command mode.
R
Replaces text beginning with the current character until you pressESC.
Cc
Changes the entire current line to the new text entered.
Cw
Changes the current word, beginning at the cursor position, to the new text entered.
S
Substitutes the character at the cursor position with the new text entered.
S
Substitutes the entire current line with the new text entered.
Table 25.23 lists ways to delete text in vi.
Table 25.23 Deleting Text in vi
Command
Description
D
Deletes from the cursor to the end of the line.
x
Deletes the current character.
dd
Deletes the current line.
You can yank and put—that is, copy and paste—text within a file and between files. The yank command, as shown in Table 25.24, copies selected text and places it in a buffer. The put commands copy the text from the buffer to a specified place in the file. Named buffers and numbered buffers are available but are beyond the scope of this discussion.
Table 25.24 Yank and Put Commands
Command
Description
yy or Y
Yanks (copies) the current line and places it in a buffer.
5yy
Yanks (copies) five lines and places them in a buffer.
P
Puts (pastes) the text that is in the buffer into the line after the current one.
P
Puts (pastes) the text that is in the buffer into the line before the current one.
You can search for a character string within the file. The search tools are case-sensitive. If the pattern is not found, vi displays a message at the bottom of the screen telling you that it is unable to find the pattern. Table 25.25 lists the available search commands and their descriptions.
Table 25.25 Search Commands
Command
Description
/pattern
Moves forward to the first character in the next occurrence of the character string pattern.
/
Repeats the previous forward search.
?pattern
Moves backward to the first character in the next occurrence of the character string pattern.
?
Repeats the previous backward search.
You can access global pattern substitution from the command prompt.
The command takes the following form:
:s/string/replacement/g
In this command, string represents any regular expression that you want to search for, replacement represents the text that replaces string, and g specifies global replacement of all occurrences of string. If the trailing g is omitted, only the first occurrence of the string in each line is replaced. If you want to be prompted to confirm each substitution, type a c after the g in the command, as follows:
:s/string/replacement/gc
Table 25.26 lists a few of the many other commands available in vi.
Table 25.26 Other Useful Commands
Command
Description
:sh
Escapes to the shell to run a command.
:!command
Runs one command.
u
Undoes the last change.
U
Restores the last deleted line.
~
Toggles the case of the current character.
xp
Transposes the character in the current cursor position with the next character.
.
Repeats the last change.
Scripting
Services for UNIX includes two tools that you can use for scripting: Perl and sh.
Perl is a scripting language that is useful for automated tasks, such as processing text files by using pattern matching techniques. Perl is “open source” software. Not all Perl functions are implemented in Services for UNIX. For more information about Perl, see Services for UNIX Help.
The Korn shell provided with Services for UNIX can be used as a shell script processor. For more information about using the Korn shell for scripting, see Services for UNIX Help under the topic sh.
Troubleshooting
Connectivity between Windows 2000 Professional and UNIX hosts requires correct configuration on both computers. This section lists the common UNIX connectivity errors that occur when you configure both Windows 2000 Professional and Services for UNIX.
Commonly Encountered Errors
Following are some common error messages and troubleshooting suggestions.
“An error ocurred while attempting to communicate with the Client for NFS service.”
Check if Client for NFS is started. Do this by typing net start at the DOS prompt and see if the Client for NFS service is running.
“NFS will use anonymous UID (-2), GID (-1), and factory default mount options.”
If UID is -2 and GID is -1, the user is probably authenticated as an anonymous user. Verify that your mapping server is configured correctly and set to connect correctly to the NIS server or PCNFSD server. Also check if your NIS server or PCNFSD server is configured correctly and functioning.
“Owner is nobody or group is nogroup”
This error message can occur when accessing files and the file permissions are incorrectly reported. Use the following steps to troubleshoot the problem.
 1.
Ensure that local or domain users are correctly mapped by means of the Username Mapping Server and that Services for UNIX is configured to use the correct mapping server.
 2.
Check the /etc/exports file on the UNIX server and make sure it isn’t configured to only allow anonymous connections.
 3.
If using PCNFSD, make sure that the UIDs and GIDs match on the mapping server and the UNIX server.
 4.
If the problem is with an NFS server running Services for UNIX, make sure that the Server for NFS Authentication component is installed on Windows 2000 Professional. If you have a domain environment and are using domain accounts for mapping, the Server for NFS Authentication component must be installed on all domain controllers in the domain.
Cannot Mount a UNIX NFS Volume
If you are unable to access an NFS volume with Windows 2000 Professional that is running Services for UNIX, use the following steps to troubleshoot the problem.
 1.
Check the /etc/exports file to ensure that there aren’t any host restrictions that are preventing you from mounting the NFS volume.
 2.
Make sure the file system is properly exported by running the following command:

showmount -e <IP address of UNIX host>
 3.
Make sure that the daemons mountd, nfsd, and rpcbind are running by running the following command:

rpcinfo -p <IP address of UNIX host>
 4.
Some versions of UNIX might incorrectly report that they support NFS version 3. You might need to force the Services for UNIX client to use NFS version 2. To force the client to use NFS version 2, add the registry entry DisableV3 to the following registry subkey:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Client for NFS\CurrentVersion\Default

Set DisableV3 to data type REG_DWORD with a value of 0x1.
Caution Do not use a registry editor to edit the registry directly unless you have no alternative. The registry editors bypass the standard safeguards provided by administrative tools. These safeguards prevent you from entering conflicting settings or settings that are likely to degrade performance or damage your system. Editing the registry directly can have serious, unexpected consequences that can prevent the system from starting and require that you reinstall Windows 2000. To configure or customize Windows 2000, use the programs in Control Panel or Microsoft Management Console (MMC) whenever possible.
Cannot Telnet into my UNIX server as root
If you are unable to log into a UNIX server as root by using telnet, verify that your version of UNIX is configured to allow a root user to log in remotely. For example, Sun Solaris requires editing the /etc/default/login file.
Cannot map a drive after using Telnet to access a Services for UNIX Telnet Server
If you cannot map a drive by using net use after using Telnet to connect to a Services for UNIX Telnet Server and using NTLM authentication, read the following to troubleshoot the problem.
When you are within the Telnet session, you cannot connect to network resources by using your implied user credentials. You must explicitly specify your credentials when making network connections from within the Telnet session. There is no mechanism in Windows NT to perform delegation of security, known as passthrough, for network logon attempts. As a workaround, explicitly specify credentials when mapping drives, that is, do as follows:
net use \\<server>\<share name> /user:<domainname>\<username> password
Password synchronization isn’t working properly
If the Services for UNIX Password Synchronization component is not working properly, follow the proceeding steps to troubleshoot the problem.
 1.
Ensure that SSOD is running on the UNIX server and that the Password Synchronization component has been installed on a computer running Windows 2000 (or on all domain controllers within a domain).
 2.
Ensure that the port number and passwords match on both the Windows 2000 computer and the UNIX server.
 3.
If you are using shadow passwords, edit the Ssod.config file and change the line USE_SHADOW=0 to USE_SHADOW=1
 4.
If you are using NIS, be sure that the SSOD is installed on the NIS master and that the Ssod.config file is configured with the correct path for the Makefile for password push.
