Chapter � SEQ CHAPTER \R 21 �21�

Testing Applications for Compatibility with Windows 2000

� include c:\\ntrk5\\currentbooks\\deployment\\art\\productionart\\artmans\\dgcd_art.doc art_ch21_eps \! �� INCLUDEPICTURE "C:\\ntrk5\\curren~1\\deploy~1\\art\\produc~1\\eps\\ch21.EPS" * MERGEFORMAT ����

When you are planning to deploy a new operating system, the magnitude of the effort can make it tempting to defer thinking about the applications that run on it. Critical steps in your deployment project, however, are to identify applications that could cause problems during deployment and resolve the issues before deployment begins.

To ensure that potential application problems are resolved before deployment, your applications testing manager should begin early to develop a plan for testing your Windows-based applications. This chapter leads you through the process of testing your applications for compatibility with Microsoft® Windows® 2000.

In This Chapter

Application Testing Overview 773

Managing Application Testing 775

Identifying and Prioritizing Business Applications 775

Preparing an Application Test Plan 779

Testing Applications 784

Tracking Test Results 791

Resolving Application Incompatibilities 794

Planning Task List for Application Testing 795

Chapter Goals

This chapter will help you develop the following planning documents:

(Prioritized list of business applications

(Plan for testing application compatibility

(Test tracking and reporting system

Related Information in the Resource Kit

(For more information about creating test plans, see the chapter “Building a Windows 2000 Test Lab” in this book.

(For more information about defining application standards, see the chapter “Defining Client Administration and Configuration Standards” in this book.

Application Testing Overview

Due to fundamental new technologies in Windows 2000, you need to test your business applications for compatibility with the operating system as part of your Windows 2000 deployment project. Even if you currently use Windows NT, you should not assume that all your applications will work the same way with Windows 2000. Enhancements, such as improved security, mean that you must retest the applications that were developed for previous versions of Windows. These applications might not take full advantage of the new features available in Windows 2000. They should, however, still perform as well on Windows 2000 as they do on the current platform.

Business Application Definition

In this chapter, business application refers to any application that is important to running your business. Business applications can range from large line-of-business systems to specialized tools. Consider all the applications that run on either client computers or servers, including commercial off-the-shelf products, customized third-party systems, and internally developed systems.

Note

Although this chapter frequently refers to client-based applications, the methods and issues covered apply to both server-based and client-based applications.

If your organization is like many others, you might find more applications than you have time to test. In this case, you need to prioritize them and then test the ones that are critical to your core business operations. For more information about how to prioritize applications, see “Identifying and Prioritizing Business Applications” later in this chapter.

Application Testing Process

Figure 21.1 illustrates the steps involved in the application testing process. First, you need to identify your Windows-based applications and prioritize them by how important they are to your business. As the inventory effort proceeds, you can start planning how you want to coordinate the testing. Then, as testing progresses, you need to report your status periodically to management and resolve compatibility problems as they arise. This chapter covers these steps in more detail.

	� include c:\\ntrk5\\currentbooks\\deployment\\art\\productionart\\artmans\\dgcd_art.doc art_dgcd_01_eps \! �� INCLUDEPICTURE "C:\\ntrk5\\curren~1\\deploy~1\\art\\produc~1\\eps\\dgcd_01.eps" * MERGEFORMAT ����

Figure �SEQ chapter \c�21�.�SEQ figure�1� Steps for Testing Applications

Managing Application Testing

Because of the magnitude of the application testing endeavor, it is recommended that you select a manager to develop a plan and methodology for testing and to monitor testing progress. If your organization is multinational or highly decentralized, you might want test managers in more than one location, particularly if different suites of applications are used at different locations. Using such an approach, the test managers can focus on location-specific needs, such as different network clients or performance requirements.

Early in your Windows 2000 project, lay the groundwork for application testing so that you have time to resolve any problems that arise. The test manager coordinates the application testing project, taking responsibility for tasks such as:

(Developing a system for prioritizing applications.

(Coordinating the inventory and prioritization process.

(Developing a methodology for testing.

(Determining resource requirements for testing, including hardware, software, and personnel.

(Creating a schedule for testing.

(Writing the test plan.

(Designing or purchasing a test tracking and reporting system.

(Promoting the importance of and strategy for application testing; gaining cooperation from application experts.

(Monitoring the progress of testing, and reporting on it to management, internal application development groups, and external vendors.

(Following up with groups that are not meeting their testing commitments.

Identifying and Prioritizing Business Applications

The first task in preparing for testing is to gather information about the applications you have installed on your computers (both client and server). The information you gather, such as whether the application is in active use and by how many users, will help you decide how critical it is to your business.

As you identify applications, begin to prioritize them. You need to consider each application, no matter how insignificant it seems. Any application that does not function properly can have a big impact if people depend on it to get their jobs done.

Identifying Your Applications

If you do not already have an inventory of the applications installed on your server and client computers, you need to create one. Remember to include operational and administrative tools, including antivirus, compression, backup, and remote-control programs.

Gathering Application Information

If your organization is large or decentralized, compiling the list of applications can be time-consuming. If you use Microsoft® Systems Management Server or another software inventory tool to manage your networked computers, you can use the software inventory process to gather the information and then run a query to categorize and report it. For more information about using Systems Management Server to inventory your software, see the chapter “Using Systems Management Server to Analyze Your Network Infrastructure” in this book.

If you do not have an automated way to find what applications are installed on your computers, you need to develop a process to glean the information. For example, you can develop a questionnaire or a Web-based form that managers can fill out for their business units. If you depend on a manual process, you should get the support of upper management to help you obtain prompt responses.

As you compile the list of applications, identify which ones are required for each business unit. The following list includes some examples of information you might need about each application:

(Application name and version

(Vendor name

(Current status (for example, in production, under development, no longer used)

(Number of users and their business units

(Priority or importance to your organization

(Current platforms where the application is used

Include whether the application is client-based or server-based and which components reside on the client and on the server.

(Web site addresses (URLs) for Web applications

(Requirements for installation (for example, security settings and installation directories)

(Development utility or technology (if developed internally)

(Contact names and phone numbers (internal and vendors)

If you find multiple contacts for the same vendor, try to consolidate them where possible.

Compile the application information in a central repository where you can easily access and update it as you gather additional information and prioritize the applications. When you begin testing the applications, you can also use this repository for entering test results and reporting status. For more information about tracking and reporting test results, see “Tracking Test Results” later in this chapter.

Simplifying Your Application Environment

The inventory process is a good time to gather additional information that can help you make your application environment more manageable and cost effective. The more you simplify this environment, the easier it will be to test for application compatibility, the smoother it will be to move to Windows 2000, and the easier the resulting environment will be to manage.

The information described in this section can facilitate your testing, as well as reduce future support costs.

Troubleshooting Information

Detailed information about applications can help testers diagnose problems during Windows 2000 testing and reduce troubleshooting time for your Help desk:

(Files installed on the hard drive by the application

(Date stamp of each file

(Size, in bytes, of each file

(Location where files are installed

(Registry settings

You might consider gathering this information when you install the applications in the test lab rather than when you inventory your applications. When you install applications in a controlled environment like the lab, you are more likely to obtain complete lists without the extraneous, user-specific files that accumulate as an application is used.

Redundant Applications

If your organization uses many similar applications, the inventory process might be a good time to evaluate them for redundancy and to standardize on the most widely used ones. For example, you might find that your organization uses a variety of word processing applications or versions. Standardizing on a single application and version can dramatically simplify your Windows 2000 testing and reduce your client support costs. Although a different team might evaluate and establish the application standards, the testing team should work closely with that team to focus testing on the appropriate applications. For more information about standardizing client configurations, see the chapter “Defining Client Administration and Configuration Standards” in this book.

Unauthorized Applications

As you compile the list of applications, you might find unauthorized applications that users downloaded from the Internet or brought from home. Use the inventory process to eliminate applications such as these, as well as to verify that you have licenses for all the software in use.

Site-Licensed Applications

The inventory process is a good time to identify your site-licensed applications, such as compression and antivirus programs, and to develop a strategy for managing them. If you plan to implement IntelliMirror™, use it to advertise these applications. When you use IntelliMirror to advertise applications, you can easily set up redundant servers, thus maximizing users’ access to the applications. For more information about using IntelliMirror for client support, see the chapter “Applying Change and Configuration Management” in this book.

If you do not plan to implement IntelliMirror, you might want to establish shared drives for your site-licensed applications. Assign the server a name that is easy to remember—for example, \\licensed_products.

Prioritizing Your Applications

Even before you compile the list of applications, you can start devising a way to classify and prioritize them. If you have the scheme developed by the time you perform the inventory, you can classify applications as you find them. You need a prioritization scheme for two reasons:

(You might not have time to adequately test all applications by the rollout date.

(You need to know which applications are showstoppers—that is, which ones must function properly for deployment to proceed.

The ultimate goal of your prioritization effort is to identify the core group of applications that must function properly before you begin to deploy Windows 2000. When you develop your prioritization scheme, consider the following issues:

(Importance of the application to the organization

(Number of users affected

(Availability of newer versions

(Localization needs

Your organization might already have a classification scheme that you can use or modify. For example, you might have prioritized your applications for your disaster recovery plan. If you identified which applications must be back online first during a disaster, these applications might have top priority for compatibility testing.

The complexity of your prioritization scheme depends on factors such as how many applications you have and the variety of business functions they support.

One large high-technology company developed four priority levels. They defined their priorities as follows:

Mission critical

These applications must be online first after a disaster. They are required to collect revenue or fulfill a legal obligation. The organization is willing to accept no risk or very little risk of failure for these applications, and the impact or cost of failure would be very high.

Business critical

These applications must be online second after a disaster. They are required to run the business infrastructure. Human resource applications are an example of business-critical applications. The organization is willing to accept little risk of failure, and the impact or cost of failure would be moderate.

Required

These applications are required to run the business but can be offline for a longer period of time. The organization is willing to accept moderate risk of failure, and the impact or cost of failure would be low.

Other

These applications do not fit in any of the preceding categories, and business can continue without them.

Another large high-technology organization had just two categories: mission critical and not mission critical. In case there was insufficient time to test all applications, this organization wanted to ensure that the mission-critical applications were fully tested and any problems resolved before they began their deployment.

Preparing an Application Test Plan

One of the primary tasks in preparing for testing is to write a test plan. In the test plan, you specify the scope and objectives for the testing and describe the methodology to be used. Include the following information in your plan:

(Scope

The priority levels you address during testing.

(Methodology

Who does the testing and how you involve participants.

(Requirements

What hardware, software, personnel, training, and tools you need to perform the testing.

(Criteria for pass-fail

The factors that determine whether an application passes or fails.

(Schedule

How you plan to complete the testing by the scheduled rollout.

Depending on the number of applications and your test approach, application testing might require considerable cooperation from various business units in your organization. Identify the application stakeholders early in the project and ask them to review and approve your test plan or to commit their resources to an agreed-upon level.

For more information about writing a test plan, see the chapter “Building a Windows 2000 Test Lab” in this book.

Establishing Testing Scope

If your organization uses many applications, you might not have time to test all of them as thoroughly as you would like. Test the highest priority and the most frequently or widely used applications first, but do not limit your testing to only these.

Test both server-based and client-based applications. Client-based applications are usually the most difficult and time-consuming to test because of sheer numbers.

If the commercial applications you use have already been tested by an external organization, you still need to test them in your environment. Tests that determine compatibility with underlying Windows 2000 technologies do not necessarily prove that applications will function in your environment as you use them. For more information about commercial applications that have been tested externally, see “Testing Applications” later in this chapter.

Defining the Testing Methodology

A major part of your test plan is describing the strategy for testing. When planning your methodology, consider:

(Where will the testing take place?

(Who will perform the tests?

(How will you communicate with and involve participants?

(How will you schedule the testing?

(How will you manage application problems?

Outsourcing is one option for application testing. To determine if you will use this option, consider the following:

(Do you have staff available for testing?

(Does your staff have the appropriate level of expertise?

(What are the internal costs compared to the outsourcing costs?

(What is your time frame? Can the testing get done faster if you outsource it?

(What are your security requirements? Would you need to provide confidential data to an external organization?

When you test internally, select experienced testers. If your organization has a group of application testers, it is recommended that you use them. If you do not have such a group or they are unavailable, look for ways to use a variety of resources to achieve the best results in a reasonable amount of time. For example, you can use a few experienced testers to develop a battery of test cases, which they can train others to run. Alternatively, you might have the experienced testers perform a core set of tests and then coordinate with business units to have their experts come to the lab to perform the functions they use in their work.

Devise a process for scheduling test days and communicating with the testers. For example, you might set up a Web site on your intranet where anyone can view test dates, status reports, contact names, and other relevant documents.

Establish a procedure for managing test results. Describe roles and responsibilities, including the following:

(Who enters problem reports in the incident tracking system?

(How are problems prioritized, assigned, and resolved?

(Who tracks the resolution of problems and retesting of applications?

(How do testers enter test results in the test tracking and reporting system?

Case Study 1: Testing Festivals

A large high-technology organization asked its developers to test applications for compatibility with Windows 2000. The test manager worked with other managers to get cooperation from their teams. Because the test manager reported to the CIO and had total support for the program, it was easier for her to get active participation. She scheduled testing sessions in the lab and sent notifications about the sessions to the developers. The lab was set up with preconfigured computers, ready for the testers to install their applications. Testers could install their applications from CDs or from the network. To make the events fun, the test manager provided food and beverages, thus earning the name “test fests” for the sessions.

Case Study 2: Preview Program

A major manufacturing company developed a preview program for testing Windows 2000 Professional. They used this program to test client-based applications. This organization first verified that the protocol stack to be used on the Windows 2000 client computers was compatible with its Windows NT 4.0 production environment. Then it deployed Windows 2000 Professional at restricted locations on the production network to create a place for testing applications.

The project team set up a Web site with information about the program. Users filled out an application form on the Web site to apply for participation in the preview program. To limit the number of participants and to ensure thorough testing, the project leader and the employee’s manager reviewed and approved applications. The program, which was restricted to 50–100 participants, provided a wide range of testers for testing applications. Testers posted their problem reports at the Web site.

Identifying Resource Requirements

As you plan for application compatibility testing, keep in mind the future state of your computing environment. Are you planning to upgrade some of your software to versions that fully use new Windows 2000 features? Are you planning to implement new standard desktop configurations or use Terminal Services? Issues such as these determine the resources that are required and the applications that are to be tested as a suite.

If you plan to deploy new applications with Windows 2000 during the rollout, test these applications with the current applications.

You can facilitate testing by setting up a lab where testers can conduct their tests. In such a lab, you can have the necessary tools and equipment available at all times. Some organizations have a lab for testing applications that is separate from the Windows 2000 lab. If you do not have the budget for a separate lab, you might share a lab with another project or with training. If you share a lab, try to choose one that has compatible scheduling and equipment requirements.

In the lab, set up the test computers for dual or triple startup so that testers can quickly access the mode they need to install and test their applications. For example, if you follow the strategy suggested in “Testing Applications” later in this chapter, you might need Windows NT 4.0 and Windows 2000 to test the applications through the upgrade path. To make it easy for testers to restore the computers to their prior state, make disk images of the drives with the base operating systems.

Consider whether you need to connect the lab to the corporate network. For example, you might need access to network shares for installing applications from the network or to your corporate intranet if you develop a Web-based test tracking system. If you need such access, first verify that the protocol stacks used on the client computers are compatible with your production network.

If your test lab is large, you might decide to assign a lab manager. Because the skills required to run a lab and to manage testing are so different, consider selecting different people for the two roles. While the lab manager needs to have strong technical skills, the testing manager needs to have strong managerial and communication skills.

For more information about designing and managing a test lab or about writing test plans, see the chapter “Building a Windows 2000 Test Lab” in this book.

Defining Pass-Fail Criteria

As testers conduct a variety of tests, some applications will pass and some will fail. You should have a procedure defined so that participants know when and where they can log application problems and issues to be resolved.

When testers have completed the tests for a specific application, they need to enter the results in your test tracking and reporting system. You need, of course, to prioritize and track all outstanding problems and then retest applications when the problems are resolved. To track testing progress, however, you might want to know which applications are ready and which are not. If you plan to track your progress by whether applications passed or failed, you need to define the criteria for each category you use. To define the criteria for pass and fail, consider issues such as the following:

(How significant is the problem? Does it affect a critical function or a peripheral one?

(How likely is someone to encounter the problem?

(Is there a way to circumvent the problem?

Creating a Testing Schedule

Your testing schedule depends on many conditions, including:

(How many testers participate.

(Whether the testers are on this project full-time or need to be scheduled.

(The testers’ experience levels.

(The number and complexity of the applications.

Include enough time in your schedule for resolving problems and for retesting the applications that fail. Establish major and interim milestones so that you can monitor progress and ascertain that you are on schedule.

Testing Applications

Microsoft, in cooperation with customers and independent software vendors (ISVs), has developed the Windows 2000 Application Specification. Applications written to comply with this specification are not only compatible with Windows 2000, but they also take advantage of the new technologies it provides.

The Windows 2000 Application Specification, which you can download from the Microsoft Developer Network (MSDN) Web site, has two components: one for desktop applications and one for distributed applications. The desktop application specification applies to applications that run on Windows 2000 Professional, either as a stand-alone program or as the client portion of a distributed application. The distributed application specification applies to applications that run on Windows 2000 Server. For more information about the specification and to download a copy, see the Windows 2000 Application Specification link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

Commercial applications that comply with the Windows 2000 Application Specification can also be certified. Certified applications have been tested by an independent testing organization and meet certain requirements. To receive certification, for example, an application must use the Windows Installer. Commercial applications can comply with the specification without being certified. In this case, the applications are tested by the vendor rather than by the independent testing organization.

Some organizations, as part of their Windows 2000 deployment project, have made compliance with the specification a selection criterion when purchasing applications. If you develop applications internally, consider adding the specification to your guidelines for application development.

In the meantime, many commercial applications have already been tested to determine how well they support Windows 2000. Microsoft provides a directory of Windows 2000 applications where you can look up the status of the applications you use. For more information about which client-based or server-based products support Windows 2000, see the Directory of Windows 2000 Applications link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

The directory uses the following designations:

BEGIN BREAK

END BREAK

Certified

Indicates that the application was tested by an independent testing organization and that it takes advantage of new Windows 2000 features.

Ready

Indicates that, according to the vendor, the application was tested for compatibility with and will be supported in Windows 2000. The application does not necessarily take advantage of new Windows 2000 features.

Planned

Indicates that the intent is for the application to meet either the Certified or the Ready criterion when it is fully tested.

Developing Testing Strategies

The goal of your application testing is to verify that everything that works on your current platform also works on Windows 2000. If an application was written for a previous version of Windows, it will not necessarily use new Windows 2000 features to the best advantage, but its functionality should work as well on Windows 2000 as it does on your current platform.

Strategies for Commercial Applications

For commercial applications, the first step is to run Windows 2000 Professional Setup in Check Upgrade Only mode to check for potential incompatibilities. When you run Setup in this mode, it checks the installed software against a list of applications known to be incompatible and logs any that it finds. The command-line syntax for Check Upgrade Only mode is:

winnt32 /checkupgradeonly

Although this utility can alert you to potential compatibility problems, it addresses only a small percentage of your applications and only the applications installed on the computer you are checking. Even if an application is not on the list of incompatible applications, it does not mean that it is compatible. For more information about the Setup program, see the chapter “Automating Client Installation and Upgrade” in this book.

The next step is to check the directory of Windows 2000 applications to determine the compatibility of the applications you use.

Even if you find that some of your applications have already been tested by others, you should test them in your environment. In this case, focus your testing on the way your organization uses the applications. For example, test:

(Configurations your organization uses.

(Features most frequently used.

(Combinations of applications used together.

The section “Testing Tips” later in this chapter provides examples of ways to test application functionality. If the commercial applications you use have not been tested for compatibility by other organizations, you should test more extensively than otherwise.

Remember to test your antivirus software. Many of these applications need to be upgraded because of their use of file system filters. Many Windows NT 4.0 file system filters might not work on Windows 2000 due to changes in the NTFS file system.

Strategies for Custom Applications

If you use custom third-party products or develop applications internally, you need to develop a more extensive testing strategy than for pretested commercial applications.

Even if you are testing an application you did not develop, the Windows 2000 Application Specification can provide insight into testing. The MSDN Web site includes a downloadable version of the specification, as well as a test plan detailing all the Microsoft tests for Windows 2000 application certification. This test plan can provide you with ideas about functional areas and ways you should test. For more information about how to download the specification or test plan, see the Application Specification Download link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

The MSDN Web site also contains other important information about testing, such as white papers about exploratory testing and the method that independent testing organizations use to test the functionality of applications that vendors submit for certification.

Testing Tips

The testing suggestions in this section are not comprehensive and do not apply to all situations. They are provided to help you start thinking about how to test.

Test Deployment Scenarios

You should test installing and running your applications using the scenarios you plan to use during deployment. For example, you might plan to deploy by installing on clean machines or by upgrading from Windows 3.x or a prior version of Windows NT. If you plan to upgrade, you might keep the applications on the computer during the upgrade, or you might uninstall them and reinstall them after the upgrade.

Consider repackaging applications for the Windows Installer or as .zap files so the application can be managed by IntelliMirror software installation and maintenance. For more information about packaging applications, see the chapter “Applying Change and Configuration Management” in this book.

Because of differences between Windows 3.x and Windows 2000, some application installations work differently depending on which operating system you use for the installation. For example, if you install an application on a computer running Windows 3.x and then upgrade the computer to Windows 2000, the application might not work the same way as it would have if it had been installed on Windows 2000. In this case, you might need to uninstall the application and reinstall it after the upgrade or obtain a migration dynamic link library (DLL).

A migration DLL allows an application that was originally installed on Windows 3.x to function correctly after the computer is upgraded to Windows 2000. Migration DLLs can resolve application problems by performing the following actions:

(Replacing or upgrading Windows 3.x–specific files with Windows 2000–compatible files.

(Moving application and user settings to the correct location for Windows 2000.

(Mapping Windows 3.x–specific registry keys to the appropriate Windows 2000 locations.

For applications developed internally, you might have to create migration DLLs or obtain them from your vendors. You can find more information about creating and testing migration DLLs by searching the MSDN Library using the keywords “migration DLL.” For more information about the MSDN Library, see the MSDN link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources. Some migration DLLs are also included with Windows 2000.

Because results can vary depending on how you upgrade, it is important to test using the same procedures and tools you plan to use during the rollout. If the procedures and tools are not ready when you are testing the applications, at least test the scenario you plan to use.

Upgrade Scenario

If you are planning to upgrade your computers, use the following steps:

(Install Windows 3.x or Windows NT 3.51 or later.

(Install the application.

(Upgrade to Windows 2000.

(Test the application.

If a Windows 3.x application does not function properly, contact the ISV for a migration DLL. If a Windows NT application does not function properly, contact the ISV for a patch or a new setup program.

Clean Installation Scenario

If you are planning to install Windows 2000 on reformatted computers, use these steps:

(Install Windows 2000.

(Install the application.

(Test the application.

If the application does not function properly, contact the ISV for a patch or a new setup program.

Test Installing and Uninstalling

Test the installation of the application in a variety of ways, such as the following:

(Terminate the installation before it is complete.

(Try all the installation options used in your environment.

(If your organization allows users to install applications, test the installation both as administrator and as power user; then test the application’s functionality.

(Try to uninstall the application.

(Verify that an application can be installed by an administrator and uninstalled by a user. When a user is logged on as a user, the uninstall should be either complete or disallowed.

Test Basic Application Functionality

Test applications using the features, configurations, and application suites you use to accomplish business tasks. For example, you can try the following types of tests:

(Log on as a user and test the features most important to your end users. Test specific scenarios that are needed to accomplish business tasks.

(Log on as several users who are members of the Users group.

(Apply Group Policy to the system and to the applications.

(Test combinations of applications, such as standard desktop configurations.

(Run several applications on the desktop for several days or weeks without shutting them down.

(Test automated tasks that use Microsoft® Visual Basic® for Applications (VBA) in Microsoft® Office applications.

(Test to determine that long file names are consistently supported. Include embedded periods and verify that leading spaces are stripped.

(Manipulate large graphic files—for example, files over 1 MB.

(Perform extensive edits on word processing documents.

(Perform rapid development sequences of edit, compile, edit, compile.

(Test OLE custom controls (OCXs).

(Test with applicable hardware, such as scanners and Plug and Play devices.

(If you plan to deploy Terminal Services, test the applications on a Terminal Services server. Test with multiple users running the same and different applications and with user-specific settings.

To download a sample test plan, see the Application Specification Download link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

Access Data

Try to access data in a variety of ways, such as the following:

(Access data on a server running the current version of Windows, as well as on a server running Windows 2000.

(Test concurrent use of a database, including simultaneous access and update of a record.

(Perform complex queries.

Test Printing

Print a variety of document types with a variety of printers, such as the following:

(Print documents with embedded files from several source applications.

(Print to printers with long file names.

Use Testing Tools

The Windows 2000 Software Development Kit (SDK), Driver Development Kit (DDK), and Microsoft® Windows® 2000 Server Resource Kit contain tools for testing and debugging applications.

(Dependency Walker, in the Windows 2000 Server Resource Kit, recursively scans dependent modules that are required by an application. This utility detects files that are missing, files that are not valid, import or export mismatches, circular dependency errors, and modules installed on mismatched computers. For more information about this utility, see the Help file that accompanies it.

(Apimon, in the Windows 2000 Server Resource Kit, monitors a running application for all application programming interface (API) calls, counting and timing them. Optionally, it can also monitor page faults. Apimon can report the following:

(A count of all API calls and timings for each.

(A trace of API calls in the sequence in which they occur.

Common Compatibility Issues

New technologies and techniques in Windows 2000 can cause errors in applications developed for previous versions of Windows. The Windows 2000 Compatibility Guide, which you can find at the MSDN Web site, includes detailed descriptions of many changes that might cause application problems. The guide organizes compatibility issues into four areas:

(Setup and installation

(General Windows 2000 compatibility

(Application stability

(Windows platform

This section describes some of the changes in Windows 2000 that most commonly cause problems for applications. Applications developed for previous versions of Windows might not take full advantage of new features, such as Active Directory or IntelliMirror. This section does not address the issues that arise when applications do not make use of such new features.

You might encounter problems in the following areas:

System File Protection

Earlier versions of Windows allowed applications to replace shared system files during installation. When such changes occurred, users frequently encountered problems that ranged from program errors to an unstable operating system.

System File Protection (SFP) is a new feature in Windows 2000 that prevents applications from replacing system files. This feature verifies that protected system files are the correct Microsoft version. If a file is replaced with an incorrect version, Windows 2000 restores the correct version.

Robust Heap Checking

Windows 2000 includes several performance enhancements in the heap manager. Applications that did not use heap management correctly before might now have their memory management problems exposed. Common problems include using memory after it has been freed and assuming that a memory will not move when it is reallocated to a smaller size.

Enumeration of Hardware Devices

Changes in the list of supported hardware devices might cause problems for applications that use devices that are no longer supported.

Enumeration of Fonts

The list of fonts has changed. Because registry keys have been added to support internationalization, some applications might see multiple displays of fonts.

Changed Registry Keys

Some registry keys have been moved or deleted. Applications that use the Win32 application programming interface (API) to make registry changes should not experience problems, but they can have problems if they write directly to the registry.

Version Checking

Application installation programs that check versions incorrectly will have problems. You should check for the minimum operating system version your application requires and install on that or any later version, unless your application is dependent on a specific operating system or version.

Windows Messaging Service

Applications that expect Windows Messaging Service (WMS) to be provided by the operating system will not find it. You must obtain this service from the Windows Update Web site.

File Input/Output Security

Windows 2000 has tightened security for file input and output. Applications that use file filters, such as antivirus programs, might lose significant functionality with Windows 2000.

Tracking Test Results

Although you might have an existing incident tracking system where you enter application incompatibilities as you encounter them, you need a separate way to track the status of your application testing. You need to be able to find information such as which applications passed, which failed, and which are untested.

Devise a way to capture test results easily and accurately so you can produce reports as you need them. Consider the following two issues when planning your approach:

(Mechanism for capturing data

(Categories of data to be captured

Choosing a Tracking System

The mechanism you choose for capturing data depends on the size of your testing effort, your budget, and the available expertise. You might decide to purchase a test tracking and reporting system. Many vendors sell products for this purpose. For more information about vendors that sell these products, see the Test Tracking Systems link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources. Alternatively, perform a search on the Web using keywords such as:

(“software testing tools”

(“test management tools”

(“automated testing tools”

(“testing tools”

Before making a decision, investigate the options and compare the cost of a ready-made solution to that of developing your own.

If you decide to develop your own system, it is recommended that you capture test results in a database rather than in a spreadsheet or word processing document. A database provides the greatest flexibility in reporting and is the easiest to manage as the volume of data grows. A Web front end provides easy access, both for entering data and for viewing status.

The advantages of an automated, online solution are that you can easily record results and create reports. The disadvantages are that it takes development time and expertise. Paper-based systems are not recommended because of major disadvantages, such as inaccessibility and the difficulty in producing timely, accurate reports.

The mechanism you decide to use—whether you develop or purchase it—should meet these criteria:

(Easy to enter data accurately.

(Easy to access by all who need to enter or view data.

(Easy to back up or duplicate for safekeeping.

(Easy to select and sort data for a variety of reports.

(Able to handle a large volume of data.

(Able to handle multiple, simultaneous users.

(Protects existing entries from changes.

The testers need a straightforward, easily remembered process for recording data as they complete their tests. You might want to have a link to the application or Web site on the test computers.

If you develop a Web site on your intranet to collect data, you can use the site as your test communications center. Include status reports, contact names, a calendar of testing events, links to related information, and other relevant documents.

To build the data collection mechanism, you need resources to develop the following:

(Web or some other application code for the data-entry application

(Database and schema

(Reports and queries

(Security, if required

Capturing Data

Once you have decided how to collect data, you need to decide what data to collect. You will find it worthwhile to spend time beforehand determining the data you need. You can design new reports as you need them if the data has been collected from the start.

You will have collected much of the information you need when you inventoried your applications. In addition, you are likely to need the following information for each application:

(Tester’s name and business unit

(Developer’s name and business unit (if developed internally)

(Windows 2000 product name (Server or Professional)

(Test results, such as:

(Passed

(Failed

(In progress

(Unknown

(Assigned number for each problem entered in the incident tracking system

(Comments

(Date and time stamp for each record

The date/time stamp provides a useful filter for creating reports for a specific time range.

Reporting Results

The more carefully you analyze the data to be collected, the more flexibility you will have for reporting. The suggestions that follow are a sample of reports you might find useful:

(A list of applications that failed the compatibility tests.

This report requires follow-up to resolve the problems and retest the applications.

(For each business unit, the total number of applications for each priority level.

(For each business unit, the total number of applications that are untested.

Include the percentage of untested applications. You can use this report to track who is keeping up and who is not. Do not overlook the possibility of using this report as an incentive for groups that are behind in their testing.

If you report progress by whether applications passed or failed, consider whether you need to show relative progress or actual numbers. You can show relative progress with enhancements such as color schemes or graphics. This can provide your audience with a sense of your progress without presenting numbers that can be misleading. If you need to show progress with actual numbers, you might want to devise a way to weight or report the numbers based on the priority of the applications. For example, a report showing only that 10 applications passed and one failed might not present an accurate status. If the 10 applications were special utilities used by a few users intermittently, and the one failed application was a critical application required to run your day-to-day business, the report would not give a complete picture.

If you have testers post issues at a specific place, such as a Web site, you might want to provide a report of open and closed issues.

Create and distribute reports to management and testing participants after each testing event, and periodically as needed. If you have a Web site for your testing project, you might include the ability to run online reports.

Resolving Application Incompatibilities

When you encounter application compatibility problems, you need to prioritize them and then assign someone to resolve them. You should have a plan for how you will assign problems. For example, problems with commercial applications are handled differently from applications that you develop internally. Assigning the appropriate personnel to research and resolve problems is critical to the success of your application testing. Problem resolution might encompass a wide variety of activities, such as the following:

(Researching Web sites for known problems and solutions.

(Contacting vendors for patches, setup programs, or migration DLLs.

(Contacting Microsoft Product Support Services.

(Debugging internally developed applications.

As you research the cause of a problem, consider various approaches to determine the most effective solution. For example, you might choose to:

(Fix the problem if you developed the application.

(Ask the vendor to fix the problem if you purchased the application.

(Replace the application with a new version or application.

(Ignore the failure if you have a way to work around the problem.

Always be sure that a problem does not occur on your current platform before researching it as a Windows 2000 compatibility issue. Some of the resources for researching Windows 2000 compatibility issues are:

(Windows 2000 Application Specification

For more information about how to download the specification, see the Application Specification Download link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

(Windows 2000 Compatibility Guide

This guide, available on MSDN and Technet, includes valuable information about diagnosing compatibility problems.

(Microsoft Technet

This resource contains product updates, white papers, and other technical information. For more information about Technet, see the Technet link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

(Directory of Windows 2000 Applications

This includes support information and links to vendor Web sites. For more information about the directory, see the Directory of Windows 2000 Applications link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

Planning Task List for Application Testing

Table 21.1 summarizes the tasks you need to perform when planning and testing for application compatibility with Windows 2000.

Table �SEQ chapter \c�21�.�SEQ table�1� Planning Task List for Application Testing

��Task�Location in chapter����Inventory the applications used for business tasks.�Identifying and Prioritizing Business Applications��Consider reducing the number of applications you use and developing desktop standards.�Identifying and Prioritizing Business Applications��Develop a system for prioritizing applications.�Identifying and Prioritizing Business Applications��Prioritize the applications by how critical they are to running your business.�Identifying and Prioritizing Business Applications��Write a test plan, including test methodology, lab and test resource requirements, and schedule.�Preparing an Application Test Plan��Develop a test tracking system for capturing and reporting test results.�Tracking Test Results��Promote the testing methodology.�Preparing an Application Test Plan��Schedule test events.�Preparing an Application Test Plan��Test applications and record results.�Testing Applications��Report on testing progress.�Tracking Test Results��Resolve application incompatibilities.�Resolving Application Incompatibilities��

Additional Resources

(For more information about testing and diagnosing application incompatibilities, see the Microsoft Knowledge Base link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

(For more information about testing applications, see:

(Testing Computer Software by Cem Kaner, Jack Falk and Hung Quoc Nguyen, 1993, New York, NY: Van Nostrand Reinhold

(Black-Box Testing: Techniques for Functional Testing of Software and Systems by Boris Bizer, 1995, New York, NY: John Wiley & Sons

(Software Testing: A Craftsman’s Approach by Paul Jorgensen, 1995, Boca Raton, FL: CRC Press

(The Craft of Software Testing: Subsystem Testing Including Object -Based and Object-Oriented Testing by Brian Marick, 1995, Englewood Cliffs, NJ: Prentice Hall

�PAGE�796� Part 6 Windows 2000 Professional/Client Deployment

	� STYLEREF Cn * MERGEFORMAT �Chapter 21� � STYLEREF Ch * MERGEFORMAT �Testing Applications for Compatibility with Windows 2000� �PAGE�795�

	�PAGE�771�

