Chapter 11 - Services for UNIX
Interoperability is essential in today's increasingly heterogeneous computing environment. By providing core interoperability components, Microsoft® Windows® Services for UNIX offers the means to integrate Windows into an existing UNIX environment and migrate existing UNIX scripts into the Windows environment, simplifying administrative tasks.
This chapter assumes an understanding of the information in “UNIX Interoperability Concepts” in this book.
Important At this printing, prior to the release of Microsoft® Windows® 2000, the current version of Services for UNIX is Version 1.0 for Microsoft® Windows NT® version 4.0. For updated information on new features, see the Microsoft Web site at http://www.microsoft.com.
In This Chapter
Overview
File Sharing with NFS
Telnet Server and Client
Password Synchronization
UNIX Utilities and Korn Shell
Related Information in the Resource Kit

For more information about Windows file permissions, NTFS, and FAT, see “File Systems” in the Microsoft® Windows® 2000 Server Resource Kit Server Operations Guide.

For more information about TCP/IP, see “Introduction to TCP/IP” in the Microsoft® Windows® 2000 Server Resource Kit TCP/IP Core Networking Guide.

For more information about authentication, see “Authentication” in the Microsoft® Windows® 2000 Server Resource Kit Distributed Systems Guide.

For more information about security, see “Planning Distributed Security” in the Microsoft® Windows® 2000 Server Resource Kit Deployment Planning Guide.

For more information about printing, see “Network Printing” in the Microsoft® Windows® 2000 Server Resource Kit Server Operations Guide.
Overview
Services for Unix supports the following UNIX platforms:

Digital® UNIX

Hewlett-Packard HP-UX® 10.1+

Sun Solaris® SPARC 2.5.1+
Services for UNIX provides the following features:
Network File System NFS server and client software enables users of Microsoft® Windows NT®–based computers to access files on UNIX computers and users of UNIX to access files on Windows NT-based computers.
Note Services for UNIX does not provide print services. Windows 2000 includes native line printer remote (LPR) and line printer daemon (LPD) UNIX print services. For more information, see “Network Printing” in the Microsoft® Windows® 2000 Server Resource Kit Server Operations Guide.
Telnet Client and Server Telnet Client and Server give users the ability to remotely log into and run commands on Windows NT-based and UNIX-based computers.
Password Synchronization Services for UNIX synchronizes passwords for users of Windows NT-based and UNIX-based computers. Changes to Windows passwords are automatically propagated to the UNIX-based computer.
UNIX Utilities and Scripting Services for Unix provides UNIX commands and Korn shell, which you can use to automate common processes and administrative tasks across Windows and UNIX platforms.
File Sharing with NFS
Network File System, defined in RFCs 1094 and 1813 of the Internet Engineering Task Force (IETF), is a set of protocols for file access across a network. For example, clients use NFS to access files located on remote servers. NFS uses a client/server model and is based on the remote procedure call (RPC) protocol, a method of message exchange between client and server (defined in RFCs 1831, 1050, and 1057), and the external data representation (XDR) protocol, a method for translation of data between heterogeneous systems (defined in RFCs 1832 and 1014). Remote file systems located on the server are mounted locally on the client, and to the client system, the file systems appear to reside locally and can be accessed using normal resources, such as system calls and programs. Through a system of distributed file sharing, NFS permits interoperability across heterogeneous networks.
NFS provides files services. These features allow hosts to share files with each other.
NFS is a protocol. This minimizes the risks associated with recovering from a system crash, but it can impact performance. After a crash, the computer can be rebooted without the necessity of recovering the previous state. Most NFS requests are idempotent, so that routines complete actions only once, with the exception of such requests as deletes.
Supported Versions of NFS
Two versions of NFS are available: version 2 (described in RFC 1094) and version 3 (described in RFC 1813).
Version 2 includes the following features and limitations:

4 GB. File size indicator limited to 32-bits.

Network transport using User Datagram Protocol (UDP) or Transmission Control Protocol (TCP).

NFS packet size limited to a maximum of 8 kilobytes (KB).

A file-write packet must be committed to disk before the server sends an acknowledgement.
Version 3 includes the following features and limitations:

File size indicator limited to 64-bits.

Network transport using TCP or UDP.

Maximum packet size is 64 KB with UDP.

Packet size determines the number and frequency of client/server exchanges and acknowledgements.

Server can cache client write requests unless the client requests that the write request be written to disk.
NFS version 3 uses TCP as its network transport, if TCP is supported by both the client and the server. TCP has the advantage of being more reliable than UDP, but it must maintain state, so it may provide less performance in certain circumstances
Server for NFS
Microsoft Server for NFS (Services for UNIX Version 1.0) is a 32-bit, Windows-based, multithreaded kernel program that is integrated into Windows NT. It enables users to share files in a mixed environment of computers, operating systems, and networks. Server for NFS enables a computer running the Microsoft Windows operating system to act as an NFS server. File access and administrative tasks are performed through the Windows NT interface. Administrative tasks for NFS are performed through a configuration utility.
Server for NFS uses the NFS protocol, which is based on the Open Network Computing Remote Procedure Call (ONC-RPC). Remote calls from clients appear to run locally, but run on the server. The Open Network Computing External Data Representation (ONC-XDR) protocol ensures portable data transmission betweeen NFS clients and the NFS server.
Sun Microsystems developed NFS and its associated protocols. Its architecture is shown in Figure 11.1.
[image: image1.png]Application Program

NFS nis+ | [automatic| [Local Lack
File, Disk Manager
Mounting | | Cache
RPC/XDR

Transport Layer

Network Protocols (for example, TCP/IP)

Figure 11.1 NFS Architecture
Server for NFS supports the following features:
Remote File Access After Services for UNIX is installed on a Windows NT server, that server can make Windows directories and files accessible to NFS clients. Access control provides read, read-write, root and “no access” permissions to clients. Individual file permissions are controlled by Windows NT file permissions.
Global Permissions NFS clients can be grouped. NFS share access can be controlled by either using names of clients or names of groups. This is a convenient way of controlling access for a group of computers. The available permissions include no access, read-only, read/write, and root access.
Security Permissions Server for NFS is configurable for NTFS security permissions, including permissions mapping between UNIX and Windows.
User and Group Mapping In order to provide security on Windows NT files that are accessed from UNIX, Server for NFS requires the system administrator to map UNIX user or group accounts to Windows NT user or group accounts. Users are then given the same access rights under UNIX that they have under Windows NT. Alternately, sites with less stringent security needs can bypass the mapping procedure and treat all UNIX users as anonymous users.
Read and Write Buffer Size The buffer size can be managed to improve performance.
NFS Threads The number of threads can be set so that a reasonable number of NFS service requests can be handled. The maximum number of threads permitted is 512.
Caching of Inode and Directory Information The caching of the inode, which contains file attribute information, and of the directory name lookup information, which contains the paths of recently accessed directories, on the NFS server can reduce the number of system calls to the server. This can improve performance. The size of these caches can be configured by using Server for NFS.
Symbolic Links Server for NFS can be configured to support symbolic links.
File Locking File locking can be enabled either for NFS clients only (advisory locking) or for both NFS clients and Windows NT users (mandatory locking).
File Name Case Resolution Server for NFS can be configured to resolve conflicts that arise between NFS file names and NTFS, file allocation table (FAT), or CD-ROM file system (CDFS) file names as a result of case-sensitivity issues. File names can be converted to uppercase or lowercase, or case can be ignored. A translation file can be used to translate valid UNIX characters into a different character sequence. For example, Windows 2000-based computers do not permit file names to contain colons, but you can use a translation file to select a sequence of valid character to be used as a replacement for any colons that appear in a file name from a UNIX-based computer.
NFS Version 2 and Version 3 Server for NFS can be configured to use either NFS version.
Data Transport Using TCP or UDP Services for UNIX uses UDP for data transport by default. Server for NFS can be configured to use TCP, which is more reliable and has greater overhead.
Troubleshooting Tools Services for UNIX provides the showmount and rpcinfo commands for use in troubleshooting NFS problems.
Client for NFS
Microsoft Client for NFS (Services for UNIX Version 1.0) allows a computer running Windows NT to act as an NFS client and access directories and files located on a server running NFS. The NFS client mounts a directory on the NFS server. The remote access is transparent to the user.
Client for NFS supports the following features:
Access to Remote Files Exported directories and files from an NFS server can be mounted locally by an NFS client. A user’s access to a directory or file is determined by that file system’s export options and by the permissions applicable to the file itself.
Mount Options Under UNIX, the user or system administrator connects to a remote file system by issuing the mount command. This command supports various options, depending on the implementation of UNIX. Services for UNIX supports mount options that determine the following:

Buffer size, which determines the number of packets sent in a read or write request.

Type of mount, hard or soft. Hard mounts retry system calls indefinitely when a server stops responding or fails; soft mounts do not. File systems that are exported with read/write access or that contain executable files need to be hard-mounted to guarantee data integrity.

Time an RPC call waits for a response from the server before timing out.

Number of times an RPC call is resent if the NFS server does not respond (soft mount only).

File locking, which allows a user to have exclusive access to a file. NFS’s file locking works best if all NFS clients have file locking enabled.

Caching of read data on the NFS client, which reduces the number of calls to the NFS server.

Caching of write data on the NFS server, to reduce the overhead of small write operations.
NFS Authentication Options Three methods of authentication are supported:

Anonymous UID. Identifier for users without a valid login and password on the NFS server.

Standard UNIX Authentication using an NIS server. Authentication method for users with a valid login and password stored on an NIS server.

PCNFSD Authentication. Authentication method that uses the pcnfsd daemon to authenticate the login and password for NFS client computers.
Resolution of Symbolic Links Services for UNIX permits the renaming and deletion of a symbolic link. For Client for NFS to find the target of a symbolic link that is located on a file system different from the file system that is currently mounted, an entry must exist in a special configuration file that maps the remote file system to that file system's server name or share name. If no entry is found in the configuration file, Client for NFS assumes that the target file is on the same computer.
Mapping of NFS Directories to Local Drives Mounted NFS directories can be mapped to a local Windows drive, enabling a user to browse the directory by using Windows Explorer.
Setting of File Access Permissions Client for NFS supports changes to UNIX permissions on remote files.
Resolution of File Name Case Since file naming in UNIX is case sensitive and Windows preserves case but ignores it, Services for UNIX provides options to resolve file naming conflicts.
Troubleshooting Tools Services for UNIX provides the showmount and rpcinfo commands for use in diagnosing NFS conflicts. These commands are discussed in this chapter.
NFS Architecture and Protocols
NFS consists of seven layers of protocols that correspond to the layers of the Open System Interconnection (OSI) model.
Table 11.1 OSI Layers and NFS Protocols
OSI Layers
NFS Layers
Application
NFS and NIS
Presentation
XDR
Session
RPC
Transport
TCP, UDP
Network
IP
Data Link
Ethernet
Physical
Ethernet
The Physical layer controls how data is physically transmitted across the network. The Data Link layer provides transfer of data that is combined into frames. Ethernet is the standard implementation of these two layers.
The Network layer is concerned with getting the data from one host to another on the network. The Internet Protocol (IP) is an implementation of this layer.
IP must get the packets to the correct destination. It is not concerned with data reliability or with data order. It can fragment packets that are too large. The Internet Protocol uses unique IP addresses to identify hosts
The Transport Layer, which is responsible for data flow and data reliability, is implemented by using UDP or TCP.
Transmission Control Protocol (TCP) provides reliable, ordered delivery of data packets and is stateful. TCP keeps track of the order of information and resends missing data. This protocol is best for long network connections, such as file transfer.
User Datagram Protocol (UDP) is a simple, connectionless protocol that does not ensure the order or the completeness of the datagrams. It is stateless and is best for short connections such as remote procedure calls.
The Session Layer is concerned with the exchange of messages between devices. NFS uses the Remote Procedure Call (RPC) protocol.
The Presentation Layer is concerned with the exchange of data types between heterogeneous systems. NFS uses the External Data Representation (XDR) protocol. This protocol specifies the format to which the data must be converted before being sent. Once received, the data is then reconverted.
For more information about the OSI model of networking, see “OSI Model” in the TCP/IP Core Networking Guide.
Remote Procedure Call Protocol
The Remote Procedure Call (RPC) protocol enables a computer to make a call that is executed on another computer on the network. The Remote Procedure Call protocol is based on a client/server model. The client makes a procedure call that appears to be local but is actually run on a remote computer. During this process, the procedure call arguments are bundled and passed through the network to the server. The arguments are unpacked and run on the server. The result is bundled and passed back to the client, where it is converted to a return value for the client’s procedure call.
RPC can use either UDP or TCP; since RPC calls are short, UDP is preferred. Because of this, an RPC call must contain enough information to be run independently, since UDP does not deliver packets in order. In addition, the client can specify a time limit, after which, if the call is not completed successfully, it can be resent or sent to another server.
Four values define an RPC service: the program number, the version number of the RPC protocol, the procedure number (usually assigned sequentially), and whether UDP or TCP is the transport protocol. Each RPC service is assigned a program number.
RPC provides a collection of procedures called programs. Each program is identified by a program number. For example, NFS is a program with a program number of 100003.
When an RPC service starts under UNIX, it registers its service with the portmapper daemon. It registers the RPC program number and version and provides a TCP or UDP port number to which it listens for incoming requests. The portmapper itself is an RPC service that listens on TCP and UDP port 111.
The rpcinfo command is used to show all the RPC programs that are registered on a specified computer. Any RPC programs and their IP port numbers are listed in files by using either portmapper or rpcbind.
Table 11.2 lists some of the options you can use with rpcinfo.
Table 11.2 Command Line Options for rpcinfo
Option
Description
-p [host]
Lists all registered RPC programs on the specified host.
-u <host program> [ver] <received>
Sends the null command to the target host and RPC program using UDP and reports whether a response was received.
-t <host program> [ver] <received>
Sends the null command to the target host and RPC program using TCP and reports whether a response was received.
-b <program version>
Makes an RPC broadcast for a specific program and version using UDP and lists all responding hosts.
Rpcinfo is useful for diagnosing RPC problems, such as whether or not a server is active, problems with the portmapper daemon, or broadcast-related issues.
Table 11.3 lists the RPC calls that a NFS client can make to a server.
Table 11.3 NFS Version 2 RPC Calls
RPC Call Name
Description
create
Create file
getattr
Get file attributes
link
Create link to file
lookup
Look up file name
mkdir
Create directory
read
Read from file
readdir
Read from directory
readlink
Read from symbolic link
remove
Remove file
rename
Rename file
rmdir
Remove directory
setattr
Set file attributes
statfs
Get file system attributes
symlink
Create symbolic link
write
Write to file
Table 11.4 NFS Version 3 RPC Calls
RPC Call Name
Description
access
Check user access permission
create
Create file
commit
Commit cached data to stable storage
fsstat
Get file system attributes
fsinfo
Get file system information
getattr
Get file attributes
link
Create link to file
lookup
Look up file name
mkdir
Create directory
mknod
Create special device node
pathconf
Retrieve POSIX information
read
Read from file
readdir
Read from directory
readdirplus
Extended read from directory
readlink
Read from symbolic link
remove
Remove file
rename
Rename file
rmdir
Remove directory
setattr
Set file attributes
symlink
Create symbolic link
write
Write to file
NFS Threads
When a request is made for an NFS service, the Services for UNIX NFS server generates a thread to handle the request. Each thread can process one NFS request. A large pool of threads can allow a server to handle more NFS requests in parallel. The number of threads you make available needs to be determined by your performance needs as well as by their impact on other applications running on the system.
To determine the number of threads to make available, use the following formula:
16 + (4  processors)
where processors is the number of additional processors on the NFS server. Using this formula, a dual-processor server typically uses 20 threads. The maximum number of threads is 512.
PCNFSD Authentication
NFS can use PC/NFS daemon (PCNFSD), a user authentication daemon, for authentication. After authentication by PCNFSD, the user is assigned a user ID (UID) and a group ID (GID). If the UIDs and GIDs are the same on each UNIX NFS server, then only one server needs to be designated as the PCNFSD server. PCNFSD compares the user name and password provided with the contents of the /etc/passwd file. If a match is found, the PCNFSD server returns the corresponding UID and GID. If authentication is not implemented (that is, if you use neither PCNFSD nor NIS), Client for NFS assigns an anonymous UID of “-2” and an anonymous GID of “-1” to the user. If the NFS server is configured for anonymous access, the user can mount and access files, but only gains read-only access.
Using Showmount
The showmount command queries the mount daemon on a specified remote host for information about which clients are mounting from that host. The mount daemon is responsible for receiving a mount request from an NFS client, validating the request by comparing it to the list of exported file systems in /etc/exports, and if the request is valid, creating a file handle for the requested directory, and adding an entry to /etc/rmtab on the UNIX-based computer.
Table 11.5 lists some of the options you can use with showmount
Table 11.5 The Showmount Options
Option
Description
-a [host]
Lists both the client host name and the mounted directory (host: directory)
-d [host]
Lists the directories mounted by a client
-e [host]
Shows the NFS server’s export list
Since the showmount command depends on the mount daemon for its information, the list of mounted directories might not be complete at any particular time. In addition, showmount sorts and processes its output to remove any repeated information, so a directory can be mounted more than once but only be listed once. For more information, see the Services for UNIX online help for showmount.
NFS Design Features
Understanding certain NFS features, discussed in this section, can help you optimize NFS performance.
Inodes
UNIX uses an inode, which has a unique ID number, to record information about a file. Every file and every directory has an inode. A file can have more than one file name (depending on the number of links), but only one inode. An inode contains the following items:

Inode number.

File name.

File size and type.

Date and time of file creation, modification, and access.

Date and time of inode modification.

File security information (owner, group, permissions).

Number of links.

Block map, with pointers to the data blocks that make up the file.
File Naming
The NFS server applies the following file naming rules to NFS client requests:

File names can be no longer than 255 characters.

The following special characters are not permitted: < > : " / \ |.

The server recognizes “.” (current working directory) and “..” (parent of current working directory).
File Permissions
Every file has a set of permissions associated with it that determine who can access the file and what they can do with the file. (Someone with superuser or root permissions can override the permissions assigned to a file.)
Windows NT and UNIX use different mechanisms to assign permissions to files. Windows NT uses a discretionary access-control list (DACL) to assign permissions to files, and UNIX uses the concept of access mode. The access mode can be changed using the chmod command provided with Services for UNIX.
UNIX file access permissions permit a user to read, write, or execute a file based on the type of user attempting to perform the action, user, group, or other. Permission given to user applies to the owner of the file, group applies to members of a group of users to which the file belongs (the file is owned by the primary group of the person creating the file), and other applies to users other than the owner and members of the group of the file.
Table 11.6 File Permission Capabilities
Permission
Description
Read
Permits reading a file or viewing a directory.
Write
Permits creating, changing, or deleting a file or directory.
Execute
Permits execution of an executable file or browsing a directory.
UNIX identifies users and groups by user ID (UID) and group ID (GID). Users have a single UID and one or more GIDs, which are stored in the file /etc/passwd.
Windows NT assigns permissions to a file by adding an access control entry (ACE) to the DACL. An ACE consists of a right granted to a specific user or group. Services for UNIX maps a Windows NT DACL into a UNIX access mode based on the owner of the file and the associated ACEs. To accomplish this, the UNIX users and groups must be properly mapped to the appropriate Windows NT users and groups using the Server for NFS User Manager.
On the Windows NT–based computer, the user, johndo, is created and added to the Users group. On the UNIX computer, the user, johndo, is created and added to the Staff group. In Server for NFS, the Windows NT user, johndo, is mapped to the UNIX user, johndo; the group, Users, is mapped to the UNIX group, Staff. The user, johndo, takes ownership of the file, letter.doc, on an exported NFS file system on the computer running Services for UNIX, grants Full Control permissions for himself and for the group, Users, and grants List permissions for Everyone. When the user, johndo, accesses the NFS file system on the computer running Services for UNIX from a UNIX-based NFS client and runs the ls -l command on the file, letter.doc, he sees the following file listing:
rwxrwxr-x 1 johndo staff 2116 Jul 1 14:54 letter.doc
The first nine characters — in groups of three — indicate the read, write, and execute permissions for the owner (rwx), the group (rwx), and other (r-x); a hyphen indicates the absence of permission. The permissions are followed in the listing by the number of hard links (1), the user name (johndo), the group name (staff), the file size (2116), the date and time the file was last modified (Jul 1 14:54), and the file name.
Note A special situation arises when the owner of the file is the Windows NT group Administrators. If the owner of the file is Administrators, then Server for NFS automatically maps the owner to UID 0 (root) on the UNIX-based computer.
If the owner of the file is not granted explicit permissions to the file by an ACE, the file listing shows that the owner has no access rights to the file (access mode of 0). The Server for NFS administrator can change this behavior by using the Implicit Permissions check box on the Security Permissions tab of the Server for NFS Configuration dialog box. If Implicit Permissions is selected, then Server for NFS combines the permissions for any groups in which the owner is a member and that are granted permissions to a file with the permissions for Everyone to determine the access permissions for the owner.
When a file is created in Windows NT, the file inherits the permissions of its parent directory. If either the chgrp or chmod command is run from an NFS client on an Services for UNIX server, then the default behavior for Server for NFS is to remove any existing DACL entries and write the entries for the three NFS entities (owner, group, and other) to everyone. As a result, the file loses its inherited permissions. The Server for NFS administrator can change this behavior by selecting Augment DACL in the Security Permissions tab. If Augment DACL is selected, Server for NFS also writes the inherited permissions of the parent directory.
Symbolic Links
A symbolic link is a file that points (that is, contains the path) to another file or directory. A symbolic link can point to a file or a directory on any UNIX file system accessible on the network. The system finds the linked file by reading the symbolic link and then accessing the indicated file or directory. Symbolic links are useful, for example, when a file must be accessible from more than one directory.
Symbolic links can point to an absolute path or a relative path. Since a symbolic link is resolved in terms of the link’s location on the client’s file system, it is possible for a symbolic link to point to a nonexistent file or directory on the client system or to files that reside in a directory that is not mounted. Such files are not accessible.
An RPC call to a server to determine the location of a symbolic link returns a path that is interpreted on the client but might point to a file system that has not been mounted by the client. If a client mounts a directory containing a symbolic link, the target must also be mounted by the client for the file to be accessible.
Client for NFS can optionally check a local, manually populated configuration file for the correct locations of the targets of symbolic links.
For example, the system administrator of a UNIX-based NFS server, server1, creates a symbolic link named “public” that points to a fictitious directory, /server2. The ls -l command shows the following:
lrwxrwxrwx 2 root other 8 Jul 1 16:25 public->/server2
Then, on the computer running Client for NFS, or on a network file system that is accessible to it, the system administrator creates a text file listing anticipated symbolic links with entries like the following:
server2 \server2\sharename
When the computer running Client for NFS connects to the exported file system on server1, it resolves the symbolic link, public, and initiates an NFS connection to \server2:\sharename. This allows the client to view files stored on the remote server, server2.
File Locking
File locking allows a process to have exclusive access to a file or part of a file. File locking is implemented on the server and the client. A server restarted after a crash attempts to restore the lock status to the previous condition. If the client crashes, the server releases the lock. However, after the client restarts, it has a short period of time to reclaim the lock. When a file is locked, the buffer cache is not used for that file. Each write request is immediately sent to the server.
File locking is implemented differently under BSD UNIX compared to System V UNIX, which are the two versions of UNIX from which most current UNIX operating systems descend. BSD has a locking mechanism only for local files; System V locks are handled separately from the NFS protocol by an RPC lock daemon, lockd, and a status monitoring daemon, statd, which monitors status and provides crash and recovery functions for NFS locking. The lock daemon runs on both the client and the server to process lock requests and lock releases. The Network Lock Manager (NLM) protocol defines the communication between remote lock daemons.
File Caching
File caching involves storing frequently used information in quickly accessed memory. The UNIX buffer cache is a portion of the system’s memory that is allocated for file blocks that have been recently referenced. In NFS, file caching is used on the client to eliminate some RPC requests over the network and used on the server to improve data throughput. NFS maintains data integrity despite the existence of client-side and server-side caches.
The NFS redirector uses the Windows NT system cache when it opens a file for read or read/write access. When data is written to the file, it is also written to the cache. The data is flushed to the redirector later. If an unrecoverable network error occurs while the data is being transferred to the remote server, the write request might fail. In this case, the user sees a system message.
The Windows NT cache manager also does read-ahead, in which the next file block is read in advance and stored in the buffer cache. As a result, a one-to-one mapping between an application read/write request and an NFS call does not exist.
The NFS redirector supports file locking, using the Network Lock Manager (NLM) protocol, to ensure data consistency. If file locking is disabled, data caching is enabled.
File caching is not provided on Server for NFS.
Telnet Server and Client
Note Microsoft Windows 2000 provides a Telnet server that allows two client connection and a Telnet client, Telnetc.exe. For more information, see Windows 2000 Server Help.
Telnet client software allows a computer to connect to a remote computer. Telnet server software allows telnet clients to connect to a server, log in to that server, and run applications.
Services for UNIX Version 1.0 Telnet Server and Client can accept connections from and can connect to each other, as well as accept connections from and connect to UNIX-based telnet clients and servers. UNIX users can access Windows servers and run character-based applications; a UNIX shell, such as Korn shell, can be run on a Services for UNIX Telnet server. System administrators can use Services for UNIX Telnet to remotely administer Windows and UNIX servers.
Services for UNIX Telnet supports the following features:

Remote administration from Windows to UNIX, from UNIX to Windows, and from Windows to Windows.

Character-based Telnet server administration tool.

Command line Telnet emulation interface to Telnet server.

VTNT terminal type for connections between Services for UNIX Telnet client and Services for UNIX Telnet server.

VT100, VT52, VTNT, and ANSI terminal emulation.

NTLM authentication for Telnet sessions between Windows computers using Microsoft Telnet Server and Client.

Well-known Telnet options and commands.
Telnet Protocol
Telnet uses the TELNET protocol, specified in RFC 854, to connect to a remote computer that is running telnet server software over the network. It provides a two-way communication facility that allows terminal devices and terminal-oriented processes to communicate with each other. Telnet uses TCP to transmit data and telnet control information. The default port for telnet is TCP port 23.
RFC 854 states: “The Telnet Protocol is built upon three main ideas: first, the concept of a ‘Network Virtual Terminal;’ second, the principle of negotiated options; and third, a symmetric view of terminals and processes.”
Network Virtual Terminal
The Network Virtual Terminal (NVT) is a representation of a basic terminal and provides a standard that the computers on either end of a Telnet connection are assumed to follow. It defines how data and commands are sent across the network. Thus, NVT allows interoperability between Telnet and a variety of heterogeneous computers and operating systems. It consists of a virtual keyboard that generates user-specified characters and a printer that displays specific characters. Clients and servers can map their local devices to the characteristics and handling conventions of an NVT and can assume that other servers and clients are doing the same.
Telnet Session
The telnet command can be used with or without a computer name. If no computer name is used, Telnet provides command mode and provides a prompt to the user. The activation of Telnet results in a TCP connection to the server and to the Telnet daemon, tlntsvr. After a connection is established, Telnet enters input mode. Depending on the remote computer, typed text is sent from the client either a character at a time or a line at a time.
Users can access the Telnet command mode at any time by using an escape sequence. Terminal emulators provide an escape sequence for this purpose. (The Services for UNIX Telnet escape sequence is CTRL+A.) At the command line, users can set telnet options to change the behavior of telnet. After entering commands, users can return to input mode by pressing ENTER at the Microsoft Telnet> prompt.
Telnet Options
Clients and servers can negotiate additional options, beyond the default functionality provided by NVT. The telnet options are described in a number of extensions to the Telnet RFC, and RFC 855 describes the mechanism for specifying telnet options. Each telnet option is assigned a number.
Options are usually negotiated at the beginning of a Telnet session, but can also be requested during the session. Options are negotiated by exchanging option code sequences. One partner can request an option; the other can agree to the request or not. The negotiation syntax involves the use of four protocol verbs: WILL and DO, to request or offer to provide an option, and WON’T and DON’T, to do the opposite. The negotiation of options can potentially result in a nonterminating loop of acknowledgments.
Services for UNIX supports the following telnet options:

NTLM authentication, which uses a randomization algorithm and an encrypted password to authenticate users.

Terminal emulation, in which a program allows a computer to act like a specified terminal. Supported terminal types include VTNT, VT100, VT52, and ANSI.
Telnet Security
Services for UNIX provides two security options:

UNIX authentication, which uses the UNIX login and password. The password is sent as plaintext. This may be a security hazard as other network users may be able to snoop this transmission.

NTLM for authentication between a Services for UNIX Telnet Client and a Services for UNIX Telnet Server. NTLM uses pass-through authentication, in which the security credentials — domain name, user name, and hashed password — are passed through domain controllers for connections between trusted domains. The user is not prompted for login and password. This method is integrated with Windows security.

Using NTLM, a user can use telnet to connect to a remote computer and access resources on that computer; however, the user cannot access other resources on the network without being authenticated again.
For more information about NTLM, see “Planning Distributed Security” in the Deployment Planning Guide.
Password Synchronization
Services for UNIX Version 1.0 Password Synchronization synchronizes passwords between computers running Windows and UNIX, enhancing the interoperability of the two systems. The password synchronization software maintains a common password on both the Windows-based and the UNIX-based computers.
The Password Synchronization component of Services for UNIX permits a system administrator to configure a network of Windows-based and UNIX-based computers so that a change made to a Windows password is automatically propagated to the matching user name in the password files in a group of UNIX-based computers. Services for UNIX can be configured so that the password changes are sent from the Windows NT–based computer to the UNIX-based computer as either plaintext or encrypted text. All user passwords must comply with the Windows password rules that are in effect as well as UNIX password rules. Consequently, users should use the stricter of the two sets of rules when selecting a password.
Services for UNIX Password Synchronization supports the following features:

One-way password synchronization from Windows to UNIX.

Plaintext password synchronization using rlogin (the unsecured method).

Triple DES-encrypted password synchronization using a daemon provided by Services for UNIX, an encryption key for changing password in the file /etc/passwd, and Network Information Service (NIS) or NIS+ (the secured method).

Administrative tools to manage all password synchronization processes, including configuration.
Using Password Synchronization
Consider the following when implementing Services for UNIX Password Synchronization:
User Name and Password The user name and password must be exactly the same on the Windows-based and UNIX-based computers that are configured together for password synchronization. Both the user name and the password are case-sensitive.
Domain Controllers If Services for UNIX Version 1.0 for Windows NT 4.0 is installed, all Windows NT domain controllers need to have Services for UNIX installed with Password Synchronization. If Services for UNIX is installed only on the primary domain controller (PDC) and it goes down, then a backup domain controller (BDC) will be promoted to a PDC. If this domain controller does not have Services for UNIX with Password Synchronization installed, then the password database can get out of synchronization.
Password Changes After password synchronization is implemented, the UNIX system password need not be changed. If a UNIX password is changed, it is overwritten by the next change to the Windows password.
Synchronization Method All computers within a UNIX pod must use the same password synchronization method, secured or unsecured. A UNIX pod is a group of UNIX-based computers, one of which successfully receives an updated password from Windows NT.
NIS/NIS+ and Password Synchronization Services for UNIX does not support password updates to NIS or NIS+ using rlogin, so use the secured password synchronization method with UNIX computers that use NIS or NIS+ for managing system-independent information such as login names and passwords.
NIS and Password Change Propagation If an NIS domain is used as a password synchronization mode, Services for UNIX updates the NIS/NIS+ domain master, which propagates the changes to the NIS/NIS+ slave servers.
Installing the ssod Daemon If secured password synchronization is being used, the ssod daemon included with the Services for UNIX product CD must be installed on every UNIX-based computer in the pod.
Unsecured Password Synchronization If unsecured password synchronization is being used, the files /etc/hosts and .rhosts on the UNIX-based computers in the pod must be correctly configured so that rlogin can access the passwd command as a root logon. In addition, the file /etc/default/login on Sun Sparcstations must be modified and the console-only root logon must be disabled.
Security
Services for UNIX Password Synchronization sends password updates over the network as either plaintext or encrypted text. The plaintext method should only be used when security is not a concern. The encrypted method uses Triple DES encryption, described later in the chapter.
If the plaintext option is chosen, rlogin is used to change the password on the UNIX computer. The Password Synchronization service uses a login with root privileges to access the passwd command and update a user's UNIX password. The .rhosts file must contain the necessary computer names, the full host names (not the alias) of the Windows NT computer, and root. The /etc/hosts file must contain the necessary host name to IP address mappings. If you are using a Sun Sparcstation, you must modify the /etc/default/login file and disable the console-only root login.
Note NIS and NIS+ are not supported by rlogin. If your network uses NIS or NIS+, you must use the encrypted password synchronization scheme.
If the encrypted text option is chosen, the UNIX system administrator must copy the ssod program available on the Services for UNIX product CD onto the UNIX-based computer. The program must be installed as a daemon and must be configured to start when the computer is started. This daemon is responsible for opening a port and waiting for the password notification from the Windows NT–based computer. The system administrator must choose the encryption key and add it to the ssod.config file on the UNIX-based computer, as well as to the Windows NT-based computer using the Windows NT–to–UNIX Password Synchronization Service Administrator.
Services for UNIX includes versions of the binary files of ssod for Solaris, Digital UNIX, and HP-UX.
Each UNIX host in a pod must use the same encryption key. The encryption key must meet the following requirements:

It must be at least 12 characters long.

It must contain characters from at least three of the following groups:

Uppercase English letters.

Lowercase English letters.

Arabic numerals.

Special characters: (‘ ’ ! @ # $ % ^ & * _ - + = | \ { } [] : ; / " < > , . /).
Example Files
This section provides some examples of UNIX files used by Services for UNIX Password Synchronization.
The file /etc/passwd contains user information. Each user entry contains seven colon-separated fields:
login-id: password:UID:GID:user_information:home-directory:shell
The login-id field contains the name the user enters at the login prompt. The password field can either contain the encrypted password or a special marker if the password is stored in /etc/shadow (which is only accessible to root users). The UID field contains the user’s ID number. The GID field contains the ID number of the group of which the user is a member. The user_information field is used for additional information about the user which may be necessary. The home-directory field contains the absolute path for the user’s home directory. The shell field indicates the program that runs when the user logs in. If desired, a specific shell can be indicated in this field (for example, /usr/bin/ksh for Korn shell or /usr/bin/sh for Bourne shell).
The file /etc/shadow contains information about the user’s password and is only accessible by the superuser. It has nine colon-separated fields:
login-id:password:lastchg:min:max:warn:inactive:expire:flag
The login-id field is the name the user enters at the login prompt. The password field contains the encrypted password. The lastchg field contains the number of days from January 1, 1970 to the date of the last password change. The min field contains the minimum number of days required between password changes. The max field contains the maximum number of days that the password is valid. The warn field contains the number of days that the user receives a warning message about password expiration. The inactive field contains the number of days that a user is allowed to be inactive. The expire field contains the last day that the login can be used. The flag field is not currently used.
The file /etc/group contains group information. Each entry contains four colon-separated fields:
group-name:password:group-ID:list-of-names
The group-name field identifies the group. The password field can contain an optional, encrypted password. The group-ID field contains the numerical ID for the group. The list-of-names field contains the names (comma-separated) of all the members of the group.
The file /etc/hosts lists all the hosts, including the local host, that share the network. It is used to map between host names and IP addresses. Each line in the file, which describes a single host, consists of three fields separated by spaces:
IP-address host-name alias
The file /etc/hosts.equiv lists the hosts and users that can invoke remote commands on a local host without supplying a password (a trust relationship). The .rhosts file lists remote users who can use a local user account on a network without supplying a password. The file .rhosts is a hidden file that is located in a user's home directory and must be owned by the user. Both /etc/hosts.equiv and.rhosts have the same format:
host-name user-name
Both files support the use of a plus sign (+) as a wildcard. A plus sign after a host-name or user-name grants trust to all users from a particular host or from all hosts that a specific user has an account on. Trust can be granted to every user on every host in the network by placing a plus sign at the beginning of the file. This option should be used cautiously. Hosts or users whose names are omitted from a file are denied trust.
Triple DES
Triple DES, used for encryption by Services for UNIX Password Synchronization, is a variation on the Data Encryption Standard (DES). DES is an encryption method in which the sender and the receiver use the same secret key to encrypt and decrypt data. DES uses a 56-bit key. Triple DES encrypts data three times using the DES encryption algorithm. Three variations on this triple encryption are possible:

Three encryptions using three different keys

Encryption-decryption-encryption using three different keys

Encryption-decryption-encryption using the same key for both encryptions
UNIX Utilities and Korn Shell
You can use UNIX utilities and Korn shell to automate common processes across Windows NT and UNIX platforms.
UNIX Shell
Services for UNIX Version 1.0 includes a Korn shell. The shell is a command language interpreter that acts as the interface to the UNIX operating system. The shell interprets commands, calls the appropriate program, and returns standard output. Many shells also provide a high-level programming language that can be used to achieve complex tasks by combining basic utilities and functions provided by the operating system.
Korn shell, developed by David Korn at AT&T, combines many of the desirable features of the C and Bourne shells. Bourne shell, developed at AT&T by Steven Bourne, was the first UNIX shell. Bourne shell provides a powerful programming language. C shell, another UNIX shell, provides a number of features not available with the Bourne shell, such as command aliases, a command history mechanism, and job control of command processing.
Table 11.7 Shell Feature Summary

Bourne
C
Korn
Command Alias

X
X
Command History

X
X
Command-line Editing

X
Job Control

X
X
Shell Scripting
X
X
X
Other shells are available for the UNIX operating system. Bash (Bourne Again shell) is an extension of Bourne shell that incorporates features of both the Korn and C shells and is generally used with Linux. Tcsh is an extended version of C shell that includes command completion, a command-line editor, and enhanced history manipulation.
Using the Korn Shell
The implementation of the Korn shell included with Services for UNIX differs from the standard UNIX Korn shell in the following ways:

Semicolons used instead of colons to separate entries in the PATH variable.

Current directory in PATH is referred to as ;; or ;.; instead of period (.).

Startup file is called profile.ksh instead of .profile.

Startup file for system-wide environment variables is called /etc/profile.ksh instead of /etc/profile.

History file, which stores the command history of a user, is called sh_histo file instead of sh_history.

Partial job control enables running of jobs in the background using the ampersand on the command line.
If your system administrator sets up the Korn shell as your default shell in Telnet Server, it is the shell you log into when accessing a Services for UNIX server via Telnet. If you want to use Korn shell without logging into it, you can access it using the sh command (ksh in the standard UNIX Korn shell).
Environment Variables
A variable consists of a name and its assigned value. You can define variables and use them in shell scripts. Other variables, called shell variables, are set by the shell. A variable name can contain letters, numbers (but not as the first character), and the underscore. The equal sign with no spaces on either side is used to assign a value to the variable. Once a variable is defined, you must use the export command to make the value of the variable available to other processes.
The Korn shell runs the profile.ksh file when you login. The profile.ksh file is used to set user-specific environment variables and terminal modes. (The system administrator can also use /etc/profile.ksh to set variables system-wide for all user accounts on the system.) Some of the variables used in .profile include PATH, HOME, VISUAL, EDITOR, SHELL, HISTSIZE, HISTFILE, PS1, PS2, CDPATH.
Table 11.8 lists many of the environment variables used by the Services for UNIX Korn shell. For a complete list of the shell variables supported by the Services for UNIX Korn shell, consult the Services for UNIX online help for sh.
Table 11.8 Korn Shell Environment Variables
Variable Name
Description
_
Expands to the argument of the previously executed command.
CDPATH
The search path used by the cd command.
COLUMNS
Defines the width of the output display for programs that read the value, like vi.
EDITOR
Specifies a default editor for the system to call when no editor is otherwise specified.
ENV
If ENV is set, parameter substitution is performed on the value. When the shell is invoked, the named file is run first.
ERRNO
Value set by most recently failed subroutine.
FIGNORE
Contains a pattern that defines which files are ignored during file expansion.
FCEDIT
The editor for the fc command.
HISTFILE
The absolute path of the file (default sh_histo) containing the command history.
HISTSIZE
The number of commands in the history file.
HOME
The absolute path of your home directory, which becomes your current directory when you log on.
IFS
Characters used as internal field separators.
LINENO
The number of the line from standard input currently being executed by the shell script.
LINES
The number of output lines used by the select statement when printing its menu. Select writes specific words to standard error.
MAIL
The absolute path of the file where your mail is stored.
MAILCHECK
The number of seconds the shell waits before checking for new mail.
MAILPATH
The mailbox files where new mail notification is sent.
OLDPWD
The path of the previous working directory.
PATH
The absolute paths of the directories that the shell searches for executable files.
PPID
The process ID of the parent of the shell.
PS1
The prompt displayed by the shell. The default Korn shell prompt is $. Other options exist.
PS2
The secondary shell prompt
PWD
The path of the current working directory.
RANDOM
Generates a random number.
REPLY
Contains user input from the select statement.
SHELL
The absolute path of the current shell and is used by commands to invoke the shell.
TMOUT
The number of seconds the shell remains inactive before it terminates.
VISUAL
Specifies a default editor, overriding the EDITOR variable.
Metacharacters
Korn shell recognizes a special meaning for certain characters. When a regular expression contains a metacharacter, the Korn shell interprets the character as shown in Table 11.9.
Table 11.9 Korn Shell Metacharacters
Character
Meaning
\
Escape character. When immediately preceding another character, it removes the special meaning from the character it precedes.
*
Wildcard match for zero or more characters.
?
Wildcard match for one character.
[]
Wildcard match for the characters specified within the brackets.
<
Redirects standard input so that it comes from a specified file instead of the terminal.
>
Redirects standard output so that it goes to a specified file instead of the terminal.
>>
Appends standard output to the end of a specified file.
|
Pipe. Connects the standard output of one command to the standard input of another command.
&
Causes a process to run in the background when appended to a command line.
~
Represents the path of a user's home directory.
.
Current directory
..
Parent to the current directory.
$1 - $9
Represents the first nine arguments to a command.
/
Root directory.

Takes a string literally. Variable substitution allowed.

Takes a string literally. Variable substitution allowed.
`
Back quotes around a command string tells the shell to run the command and use the output in place of the string.
()
Groups commands together for execution.
;
Separates commands on a command line.
newline (ENTER)
Starts command execution.
Shell Commands
When you enter a command at the shell prompt, the shell evaluates the command, makes substitutions for variables and aliases, and then runs the command.
The basic structure of a command:
command-name argument1 argument2 >file-name
Commands can take options, which modify the action of a command. For example, ls lists the contents of a directory, but does not include the hidden (.) files. Use ls -a to also see the hidden files.
The shell processes the command after you press ENTER. Commands can also be separated by semicolons and entered on a single line; the commands on the line are not processed, however, until after you press ENTER.
When the shell runs a command, it starts a process. Each process has a process ID (PID), which is used to access the process. Processes can be run in the foreground or the background and can also be suspended or cancelled. Parent processes forked child processes, which are assigned their own PIDs.
A command receives standard input from the terminal and sends standard output and standard error to the terminal.
It is possible to redirect the standard input from the terminal to a file:
command-name < file-name
You can also redirect the standard output from the terminal to a file:
command-name > file-name
You can append it to an existing file:
command-name >> file-name
In addition, you can redirect the standard error to a file:
command-name 1>file-name1 2>file-name2
The standard output is sent to file-name1 and the standard error is sent to file-name2.
Pipes can be used to connect the standard output of one command to the standard input of another command:
command-name | command-name >file-name
The Services for UNIX Korn shell is a programmable shell that supports the following structured commands. For a complete list of supported shell commands, see the Services for UNIX online help for sh.
Table 11.10 Shell Programming Services for UNIX Korn Shell
Command
Use
case
Runs commands based on a particular setting of another variable.
for
Runs a specific list of commands.
if
Specifies conditions in a script.
select
Writes specified words to standard error.
until
Runs a list of commands until a zero value is returned.
while
Runs a list of commands while a certain condition is true.
The Services for UNIX Korn shell has built-in commands. Built-in commands are run by the shell’s own process. The built-in commands available with the Services for UNIX Korn shell are listed below. For details about each command, consult Services for UNIX online help.
Table 11.11 Services for UNIX Korn Shell Built-In Commands
Command
Description
.
Runs a shell file in the current environment.
:
Expands arguments. Returns an exit status of 0 (success).
alias
Assigns a new name to a command.
break
Exits from a for, while, or until loop.
cd
Changes the current working directory.
continue
Resumes with the next iteration of a for, while, or until loop.
echo
Displays its arguments to standard output.
environ
Standard environmental variables.
eval
Scans and runs the specified command.
exec
Runs the specified without creating a new process.
exit
Exits the shell.
export
Makes the value of the variable available to child processes.
false
Returns an exit status of 1 (failure).
fc
Selects specified commands from command history.
getopts
Parses command line options.
jobs
Displays current jobs.
kill
Ends the specified job.
let
Evaluates the expression.
print
Displays arguments from the shell.
pwd
Displays current working directory.
read
Reads one line from standard output.
readonly
Makes the value of the variable read-only so it cannot be changed.
return
Exits a function.
set
Sets shell flags or command line argument variables.
shedit
Interactive command and history editing in the shell.
shift
Promotes each command line argument (for example, $3 to $2)
shpc
Features of Korn shell specific to Windows NT.
test
Checks for the properties of files, strings, and integers, and returns the results of the test as an exit value.
time
Displays run-time and CPU time.
times
Displays user program and system times accumulated by the shell.
trap
Specifies commands to run at a signal.
true
Returns exit status of 0 (success).
type
Identifies a name as interpreted by the shell.
typeset
Sets attributes and values for shell parameters.
umask
Changes access permissions.
unalias
Removes an alias.
unset
Removes a variable definition from the environment.
wait
Waits for a child process to terminate.
whence
Describes how the shell interprets a command name (as a function, shell keyword, command, alias, or executable file).
Command Aliases
You can assign an alias, which is a name, usually easy to remember, that the shell translates to another name or string, for a command, including command-line options. The shell substitutes the command and options for the alias you enter. Creating an alias at the command line makes the alias available in the current shell environment. To make the alias part of the work environment, add a line to the shell start-up file (.kshrc) that defines the alias and exports it:
alias newname=command -option; export newname
The command alias -x exports the alias to the child process only.
To remove an alias, use unalias followed by the alias name:
unalias newname
The Services for UNIX Korn shell provides a set of predefined aliases. For more information, see the Services for UNIX online help for alias.
Command History
The Services for UNIX Korn shell features a history file, which contains a list of a defined number of executed commands. These commands can be accessed for editing and persist in the file between login sessions.
You can set the number of commands saved in the history file using the HISTSIZE variable:
HISTSIZE=number; export HISTSIZE
If you do not define this variable, UNIX saves a system-defined number of commands.
You can define the name and location of the history file using the HISTFILE variable:
HISTFILE=file-name; export HISTFILE
If you do not define this variable, your history file is named .sh_histo and stored in your home directory.
Command Line Editing
You can edit the commands in the history file, using built-in Korn shell editors such as vi or emacs, or the built-in fc command, or the complete vi editor. You can use this feature to correct mistakes or to reuse work you have completed.
To define vi as your default editor:
set -o vi
– Or –
VISUAL=/sfu/shell/vi; export VISUAL
The built-in editor provided with the Korn shell provide a subset of the full functionality available with the UNIX vi editor. You can access the vi editor to edit a command by entering the command, pressing ENTER, and then typing vi. This will allow you to edit a multiline command.
Arithmetic Evaluation
The Services for UNIX Korn shell has a built-in arithmetic expression feature. It supports logical and arithmetic operators. The syntax for arithmetic operators is $((<arithmetic expression>)) or $(<arithmetic expression>). The Korn shell replaces the arithmetic expression with its value, beginning with the innermost nested expression. Table 11.12 lists the operators.
Table 11.12 Arithmetic and Logical Operators
Operator
Description
+
Plus
-
Minus
*
Multiply
/
Divide (with truncation)
%
Remainder
<<
Bit-shift left
>>
Bit-shift right
&
Bitwise and
&&
Logical and
|
Bitwise or
||
Logical or
^
Bitwise exclusive or
!
Logical not
~
Bitwise not
<
Less than
>
Greater than
<=
Less than or equal to
>=
Greater than or equal to
!=
Not equal to
=
Equal to
Shell Scripts
A shell script is a file containing a series of commands that together perform a function. You can access a Korn shell script from the command line if you are running the Korn shell and have permission to execute the script by typing the file name. You can also run the shell script if Korn shell is not running by entering the following command:
sh file-name
Windows NT does not support execution of a script invoked from the command line only by file name; under UNIX, scripts may be executed in this manner if the path and file name of the shell are specified on the first line of the script, like the following:
#!/bin/sh
Each file or file name extension must be associated with a program. In particular, .sh or .ksh can be associated with Korn shell.
Job Control
You can use job control to run a command in the foreground or the background or temporarily suspend it. In addition, you can see a list of the commands currently running.
When you enter a command, if it is not a built-in command, the shell forks a new process in which to run the command. The kernel schedules the process and gives it a process ID (PID). The shell keeps track of the process and gives it a job number.
Some processes are run in the foreground: they might be interactive or take only a very short time to run. Other processes are better run in the background, especially commands that take a long time to run, such as a large sort. You can move a process to the foreground or the background and get a list of the current jobs. You can also temporarily suspend a process or terminate it.
Table 11.13 lists the job control commands supported by Services for UNIX.
Table 11.13 Job Control Commands
Command
Description
jobs –l
Lists the current jobs. Each job is numbered. The -l option displays the PID.
command &
Runs the command in the background. For example, sort file-name newfile &
kill job-number
Kills the job specified by job-number. The job number is displayed when a job is started with & or by using the jobs command.
UNIX Utilities
The following UNIX utilities are available as part of Services for UNIX. For more information on these commands, see Services for UNIX Help.
Table 11.14 UNIX Utilities
UNIX Command
Description
sh
Invokes Korn shell.
basename
Removes the path, leaving only the file name. Deletes any prefix ending in / and any suffix from string and prints the result to standard output.
cat
Concatenates and displays file.
chmod
Changes or assigns the permissions mode of a file.
chown
Changes the owner of a file.
cp
Copies files.
dirname
Delivers all but the last level of the path in string. See basename.
find
Recursively searches directory hierarchy looking for files that match a specified Boolean expression.
grep
Searches files for a pattern and prints all line containing that pattern.
head
Copies first n lines of specified file names to standard output.
ln
Creates hard link to file. Links a file name to a target by creating a directory entry that refers to the target.
ls
Lists contents of a directory.
mkdir
Creates named directory with read, write, and execute permission for every type of user.
more
A filter that displays the contents of a text file on the terminal, one screen at a time.
mv
Moves file name to target.
rm
Removes entry for file from a directory.
rmdir
Removes directory.
sed
Stream editor. Copies named file name to standard output, edited according to a script of commands.
sort
Sorts lines of all named files together and writes result to standard output.
tail
Copies named file to standard output, beginning at the designated place.
tee
Transcribes standard input to standard output and makes copies in file name.
touch
Updates access time or modification time of a file.
uniq
Reports repeated lines in a file.
wc
Displays a count of lines, words, or characters in a file.
vi
Screen-oriented visual display editor based on ex.
perl
An interpreted language used for scanning text files, extracting information from those files, and printing reports based on that information.
Using vi
The vi editor is an interactive text editor for creating and editing ASCII files. The vi editor requires you to enter a command to perform an action, such as entering text, deleting text, or moving the cursor. You can be in one of two modes when using vi: command mode or input mode. In command mode, you can enter commands to perform such actions as deleting text or moving the cursor in the file. In input mode, you can enter and change text. You enter input mode by entering a specific vi command. You leave input mode by pressing ESC. This section provides some basic information to get you started using vi. Once you understand the basic mechanics of using vi, you can explore its functionality. (The mechanics are simple; the details can seem obscure at first.) For further details on the complete functionality of vi, consult any of the available print or online sources. In addition, consult the Services for UNIX online help for vi.
To edit a file using vi, at the system prompt type:
vi file-name
and press ENTER.
If the file already exists, it appears on the screen. If the file does not exist, vi creates it.
Note You can take advantage of a file recovery feature that is provided with vi. If the system saves a copy of the last saved version of your file in a buffer, you can access that copy of the file, by typing vi -r file-name and pressing ENTER.
What you see on the screen is the text of the file (if it exists), a blinking cursor in the left-hand corner of the screen, a column of tildes along the left margin of the file representing blank lines (if there are any in view), and the name of the file in the last line of the screen. (The bottom of the screen is also used to display messages, to show commands you enter that begin with /, ?, !, and :, and the indication of input mode if showmode option is set.)
To begin entering text, press i (to insert text). You can then begin typing. The text you enter appears, beginning at the position of the cursor. When you are done entering text, press ESC.
To save the file and exit vi, type:
:wq
and press ENTER.
Use the colon to escape to the shell so that you can enter a command at the bottom of the screen. Press w to write the file to disk. Press q to quit the vi editor.
Table 11.15 Starting and Quitting vi
Command
Description
vi file-name
Edits file-name (this creates a new file or edits an existing one)
vi -r file-name
Recovers a file after a system crash and edit it
:q
Quits vi if no changes have been made
:q!
Quits vi without saving changes
:wq
Writes (save changes) and quit vi
After you have created a file using vi, you can move throughout the file. As the size of the size of the file increases, the ability to move at will to any place in the file becomes increasingly useful using the following commands in command mode.
Table 11.16 Moving the Cursor in Command Mode
Command
Description
Spacebar
Moves the cursor forward one character
Backspace
Moves the cursor back one character
l
Moves the cursor one character to the right
h
Moves the cursor one character to the left
j
Moves the cursor down one line
k
Moves the cursor up one line
Ctrl-d
Scrolls down half a screen
Ctrl-u
Scrolls up half a screen
Ctrl-f
Scrolls down one screen
Ctrl-b
Scrolls up one screen
nG
Moves the cursor to line n
G
Moves the cursor to the end of the file
Many ways are provided for inserting and changing text that allow for detailed control.
Table 11.17 Input Mode
Command
Description
a
Insert text after the cursor
A
Insert text at end of the current line
i
Insert text before the cursor
I
Insert text before the current line
o
Open a line in the text below the cursor
O
Open a line in the text above the cursor
Table 11.18 Changing Text
Command
Description
r
Replace the current character with the next character typed; return to Command mode.
R
Replace text beginning with the current character, until ESC invoked.
cc
Changes the entire current line to the new text entered.
cw
Changes the current word, beginning at the cursor position, to the new text entered.
s
Substitutes the character at the cursor position with the new text entered.
S
Substitutes the entire current line with the new text entered.
Table 11.19 shows the possible ways to delete text in vi.
Table 11.19 Deleting Text
Command
Description
D
Delete from cursor to the end of the line
x
Delete the current character
dd
Delete the current line
You can yank and put — that is, copy and paste — text within a file and between files. The yank commands copies specified text and places it in a buffer. The put commands copy the text from the buffer to a specified place in the file. Named buffers and numbered buffers are available but are beyond the scope of this discussion.
Table 11.20 Yank and Put Commands
Command
Description
yy or Y
Yanks (copies) the current line.
5yy
Yanks five lines.
p
Puts (pastes) the text in the buffer in the line after the current one.
P
Puts (pastes) the text in the buffer in the line before the current one.
You can search for a character string within the file. Remember that the search tools are case-sensitive. If the pattern is not found, vi displays a message at the bottom of the screen telling you that it is unable to find the pattern.
Table 11.21 Search Commands
Command
Description
/pattern
Moves forward to the first character in the next occurrence of the character string pattern.
/
Repeats the previous forward search.
?pattern
Moves backward to the first character in the next occurrence of the character string pattern.
?
Repeats the previous backward search.
Global pattern substitution, a powerful tool, is available from the command line.
The command takes the form:
:s/string/replacement/g
and press ENTER. In this command, string represents any regular expression that you want to search for, replacement represents the text that will replace string, and g specifies global replacement of all occurrences of string. If the trailing g is omitted, only the first occurrence of the string in each line is replaced. If you want to be prompted to confirm each substitution, type a c after the g in the command, as follows:
:s/string/replacement/gc
Here are a few of the many other tools available in vi.
Table 11.22 Other Useful Commands
Command
Description
:sh
Escape to the shell to run a command
:!command
Run one command
u
Undo last change
U
Restore the last deleted line
~
Toggle the case of the current character
xp
Transpose the character in the current cursor position with the next character
.
Repeat last change
Scripting
Services for UNIX includes two tools that you can use for scripting: Perl and sh.
Perl is a scripting language that is useful for automated tasks, such as processing text files by using pattern matching techniques. Perl is “open source” software. Not all Perl functions are implemented in Services for UNIX. For more information, consult the Services for UNIX online help for perl.
The Korn shell provided with Services for UNIX can be used as a shell script processor. For more information on using the Korn shell for scripting, consult the Services for UNIX online help for sh.
Additional Resources

For more information about NFS, see Managing NFS and NIS by Hal Stern, 1991, Sebastopol: O'Reilly & Associates, Inc.

For more information about Windows NT and UNIX, see Windows NT & UNIX Administration, Coexistence, Integration, & Migration by G. Robert Williams and Ellen Beck Gardner, 1998, Reading, Massachusetts: Addison-Wesley Longman, Inc.

For more information about UNIX, see UNIX System V: A Practical Guide Third Edition by Mark G. Sobell, 1995, Menlo Park, California: Addison-Wesley Publishing Company.

For more information about TCP/IP and ONC/NFS, see TCP/IP and ONC/NFS Internetworking in a UNIX Environment Second Edition by Michael Santifaller, 1994, Wokingham, England: Addison-Wesley Publishing Company.

For more information about Requests for Comments (RFCs) and Internet drafts, see the link to the IETF on the Web Resources page http://windows.microsoft.com/windows2000/reskit/webresources.
