Chapter 10 - Measuring Multiprocessor System Activity
Managing the distribution of interrupt, thread, and deferred procedure call (DPC) activity for optimal performance means understanding factors that can limit and enhance the throughput on a symmetric multiprocessing (SMP) system. 
In This Chapter
Overview of SMP Performance and Monitoring
Monitoring Activity on Multiprocessor Systems
Optimizing and Tuning Multiprocessor Installations
Application Design and Multiprocessor Performance
Network Load Balancing and Scaling
Related Information in the Resource Kit

For more information about general monitoring procedures, see “Overview of Performance Monitoring” in this book.

For more information about monitoring single-processor systems, see “Analyzing Processor Activity” in this book.

For more information about system problems that can affect performance, see “Troubleshooting Strategies” in this book.
Overview of SMP Performance and Monitoring
Microsoft® Windows® 2000 is designed to implement symmetric multiprocessing (SMP). With symmetric multiprocessing, the operating system can run threads on any available processor. As a result, SMP makes it possible for applications to use multiple processors when additional processing power is required to increase the throughput capability of a system. Similarly, on Windows 2000, hardware interrupts and deferred procedure calls (DPCs), software interrupts at a low Interrupt Request Level (IRQL), can also run on any available processor determined by the hardware abstraction layer (HAL). Although most SMP systems running Windows 2000 dynamically distribute threads and hardware interrupts equally among all available processors, you might want to restrict threads and interrupts to one or more processors to improve processor cache locality and overall system throughput.
The following overview describes workloads that benefit most from scaling to an SMP system. This chapter also provides an overview of the steps involved in monitoring SMP systems and discusses the impact of SMP on system resources. 
Benefits of Scaling
The process of adding processors to your system to achieve higher throughput is called scaling. Applications that benefit from multiprocessor configurations are typically those that are processor-intensive, such as database servers, Web servers, and active file and print servers. Processor-intensive applications that use multiple processes or are multithreaded with asynchronous execution are also well suited to multiprocessor systems. Systems requiring heavy computation capability, including detailed calculation for scientific or financial applications, complex graphic rendering, computer aided design (CAD)– based modeling, or electrical-engineering design might also demand multiprocessor systems. 
To understand the degree of benefit you can attain from scaling to multiple processors, determine the scale factor. The scale factor is a measurement of the increase in throughput you can expect to achieve. You can determine the scale factor of the system by comparing the throughput of one processor to the throughput of multiple processors. 
The formula for computing scale factor is:
Number of transactions per second on n processors  Number of transactions per second on 1 processor 
For example, if a single-processor system is using 100 percent of the processor handling 100 transactions per second and, with the addition of three processors, the resulting four-processor system can handle 320 transactions per second, the scale factor of the system is 3.2.
Analyzing Performance on SMP Systems
You can monitor the activity of your SMP system by using the Performance console and its counters. To evaluate your system’s performance, look at the following factors:

Processor utilization and queue length. You might need to partition the workload so that a particular processor handles a particular workload to achieve better performance. For more information, see “Optimizing and Tuning Multiprocessor Installations” later in this chapter.

Processor performance data, such as context switches, interrupts, threads, and processes. Activity rates and usage levels for these types of data that are higher than expected for a particular throughput can reveal inefficiencies in how your processors handle their workload. You might need to partition these types of activity. For more information, see “Optimizing and Tuning Multiprocessor Installations” later in this chapter.

Overall resource utilization on your system. Scaling to multiple processors can increase the load on resources such as disks, memory, and network components, and it might be necessary to increase the capacity of these components. For more information, see “SMP Impact on System Resources” later in this chapter.
Note   Application developers are in the best position to control how processes behave in an SMP environment. “Application Design and Multiprocessor Performance” later in this chapter provides guidelines for application developers who want to design programs that run well on multiprocessor systems. 
SMP Impact on System Resources
The increased processing power and throughput on SMP systems can cause other system resources such as memory, the system bus, disks, and network to have a heavier load. For example, arbitration among shared resources increases memory latency. This is because code running on SMP systems needs to lock shared data to ensure data integrity, and locking shared data might result in contention for shared data structures. Further, the synchronization mechanisms used to lock shared data structures can increase the processor code path. As a result, when the number of processors on a system is scaled up, it is generally necessary to increase other resources on the system, such as memory, disks, and network components, as described in the following. 
Processors.   A large processor cache delivers the best performance. In multiprocessor configurations, the cache can reduce memory latency on the shared system bus thereby reducing resource contention and access. 
Memory.   It is recommended that your SMP system have more than 64 MB of memory because it is likely that it carries a heavier workload than a single-processor system, and runs more processes and threads. In general, it is recommended to scale memory with processors. For example, if a single-processor system requires 64 MB of memory and a second processor is added to increase the throughput, double the memory to 128 MB. Although multiprocessor systems do require additional memory because of their per-processor data structures, the additional memory required is minimal compared to the typical demand of the working sets for the additional processes and threads running in a multiprocessing environment. 
Disk and network components.   When adding processors to the system it is generally necessary to increase the disk and network capacity of the system.
For information about the adequacy of resources in your configuration, see the earlier chapters under the “Performance Monitoring” section of this book.
Monitoring Activity on Multiprocessor Systems
In addition to counters used to determine a baseline, as described in “Overview of Performance Monitoring” in this book, and processor-specific counters, as described in “Analyzing Processor Activity” in this book, the counters listed in Table 10.1 are useful for obtaining detailed information when evaluating the performance of multiprocessor systems.
Table 10.1   Multiprocessor System Counters and Descriptions
Object(Instance)\Counter
Description
Process(process_name)\Thread Counter 
Shows the last observed value, not an average. You need to monitor it at various times to get an accurate picture of activity.
Processor\% DPC Time
Determines how much time the processor is spending processing DPCs. DPCs originate when the processor performs tasks requiring immediate attention, and then defers the remainder of the task to be handled at lower priority. DPCs represent further processing of client requests.
Processor\% Interrupt Time
Determines how much time the processor is spending processing interrupts. Interrupts are generated when a client requests a connection or sends data. If processor time is more than 90 percent and this value is greater than 15 percent, the processor is probably overburdened with interrupts.
Processor\DPCs Queued/sec

Monitors the rate at which DPCs are queued on a particular processor. (This counter does not measure the number of DPCs in the queue.)
Processor\Interrupts/sec
Reflects the rate at which the processor is handling interrupts.
System\Context Switches/sec
Indicates that the kernel has switched the thread it is running on a processor. A context switch occurs each time a new thread runs, and each time one thread takes over from another. A large number of threads is likely to increase the number of context switches. Context switches allow multiple threads to share time slices on the processors, but they also interrupt the processor and might reduce overall system performance, especially on multiprocessor computers. You should also observe the patterns of context switches over time.
System\System calls/sec
Monitors the frequency of calls to Windows 2000 system service routines. These are the services exported to applications from the kernel. 
Thread(process_name\Thread #)\% Processor Time 
Monitors processor time usage by threads on the system.
Thread\Context Switches/sec
Monitors context switches generated by individual threads.
The following sections describe how to monitor and analyze the values reported in specific areas:

Processor Time Data 

Processor Queue Lengths

Interrupt and DPC Data

Thread and Context Switching Data
Examining Processor Time Data
The Processor\% Processor Time counter reports CPU utilization on your system. It is important to monitor this counter on SMP systems just as it is on single-processor systems. Observe processor usage patterns for individual processors and for all processors over an extended period. Also consider the number of threads in the system’s processor queue to determine if high processor usage is limiting the system’s ability to accomplish work. 
Figure 10.1 depicts a high rate of processor use on a multiprocessor system.
[image: image1.png]fe Processor Time Tor
Pracessor- Intensive
Thread
acion vew || &

BE 2
()] ppE +xle =@

—processor
Queue
Last B2504  Average 67.002 Min 53378 Max 100,000 Lent

Duaon 140

[Color_|_Sca ] Comer Trsfance | Parent | Obet Compiter ]

7,000 % Processar Time 0 Processar  WNDAMDCT
—— 1,000 % Processor Tine 1 Processar  WNDAMDCT
10000 Processor Queue Lenghh

5ystern \NOANMDC]





Figure 10.1   Example of High Rate of Processor Usage on an SMP System
On multiprocessor systems, the Processor\% Processor Time value reported by System Monitor will never exceed 100 percent for any particular processor or thread. On the other hand, the value of the % Processor Time reported for the Process object can report values over 100 percent; if such values occur, this could indicate that threads of the process are cumulatively using more than 100 percent of a processor. To get more detailed information, use the Thread object counters to analyze the processor time each thread within a process is using. Investigating other data described in this section, such as DPC activity or context switching, might help you to interpret high processor-time values. 
Observing Processor Queue Length
The System\Processor Queue Length counter is a rough indicator of the number of threads each processor is servicing. The processor queue length, sometimes called processor queue depth, reported by this counter is an instantaneous value that is representative only of a current snapshot of the processor, so it is necessary to observe this counter over a long period of time. Also, the System\Processor Queue Length counter is reporting a total queue length for all processors, not a length per processor. 
The optimal processor queue length can vary based on processor utilization or other factors as follows:

For busy systems that experience processor utilization in the 80 to 90 percent  range and use thread scheduling, the queue length should range from one to three threads per processor. For example, on a four-processor (4P) system, the expected range of processor queue length on a system with high CPU activity is 4 to 12. 

On systems with lower CPU utilization, the processor queue length is typically 0 or 1. 

For systems running services that use fiber scheduling, such as Microsoft® SQL Server™ version 7.0, the typical processor queue length will range between 0 and 1, because there is a single thread on each processor that schedules fibers within the thread. (Fiber scheduling is enabled when the lightweight pooling option is selected.)
If the processor queue length exceeds the value recommended in the preceding list, it generally indicates that there are more threads than the current processor can service in an optimal way. Reducing the number of threads or providing more CPU power, either by adding processors or upgrading to faster processors, are optional methods of shortening the processor queue. 
Figure 10.2 shows a long queue that has developed over time, as processors have been working at capacity.
[image: image2.png][r[e] 0] EwE]

+xle BeE o=

\\COMPUTER2
Process
% Processor Time

Processor
% Processor Time

System
Processor Queue Length

Thiead
% Processor Time

CPUSTRES
100000

_Total
100.000
700
CPUSTRES
oo

000

Idie
000

oo
100000

CPUSTRES
140
100000

0
100000

Idie
[
00m

Idie
1
00m





Figure 10.2   Example of Long Queue at High Processor Usage
When you begin to see longer queues, monitor additional counters for DPC and interrupt activity, as described in the following sections.
Analyzing Interrupt and DPC Activity
On a multiprocessor system, interrupt-activity rates on different processors indicate how your system is distributing its workload among the available processors. Similar to context-switching rates, interrupt-activity rates can reveal distribution of work in a way that is inefficient and costly in terms of overall performance. 
Most SMP systems can distribute hardware interrupts for handling on any of the processors. This allows interrupts to be handled by all processors, rather than concentrating the load on a single processor. In general, distributing interrupts provides better throughput. However, this depends greatly on the workload being processed. 
When interrupts are distributed, the DPCs that arise from those hardware interrupts might run on different processors as well, meaning that their shared data is not cached but must be rewritten and reread. In addition, the assignment of a DPC to run on a different processor causes an interprocessor interrupt (IPI). An IPI is a high-Interrupt Request Level (IRQL) interrupt. Although it has a relatively low cost in terms of performance, like any interrupt, it reduces the efficiency of the processor cache of the target processor because cache lines are displaced by the interrupt. 
At times when the system is developing a long processor queue or experiencing high rates of processor usage, observe the proportion of the processor's time that is spent servicing interrupts and DPCs. Compare the values of the Processor\% Interrupt Time and Processor\% DPC Time counters to Processor\% Processor Time. 
If interrupt and DPC processor-time values are high, you need to investigate further:

Observe the rate of interrupts and DPCs for each processor. 

Note whether interrupts and DPCs are distributed equally among all processors or whether one or more processors are servicing all of the interrupts or DPCs. 
In general, a very high rate of interrupts might indicate a disk or a network adapter that needs upgrading or replacing. Test your components and rule out a hardware problem before proceeding. However, on a multiprocessor computer, the most common interrupt-related problem is its distribution among processors. It might be necessary to redistribute interrupts or DPCs or upgrade to a faster processor to avoid a bottleneck.
For information about how to manage interrupt, DPC, and other activity for better SMP performance, see “Optimizing and Tuning Multiprocessor Installations” later in this chapter.
Monitoring Context Switches and Threads
When examining a multiprocessor system, monitor Thread\Context Switches/sec and Thread\% Processor Time to observe which threads are running on which processors, and to find out how frequently they switch between them to do the work of a particular process. This is important to know because there can be occasions when the switching of threads impedes optimal performance.
Typically, Windows 2000 uses a soft affinity algorithm that favors running a thread either on the last processor that serviced it or its ideal processor, a processor associated with a thread with a default value assigned by the system or optionally specified by the program developer in the application code. Affinity is the mechanism for associating threads of a process with a processor. With soft affinity, the association can vary between different processors; with hard affinity, the association is fixed to a set of one or more processors. In general, soft affinity is an optimal design that takes advantage of cache locality. However, when threads migrate from one processor to another processor, memory access to previously cached data may be slower. At worst, thread migration might cause false sharing because, to the cache coherency hardware of the CPU, it might appear that multiple processors are sharing a cache line.
Therefore, monitoring context-switching activity and thread processor usage is useful to application developers in understanding thread behavior. 
Optimizing and Tuning Multiprocessor Installations
One way to get maximum performance from a system is to partition your workload so that a specific processor is servicing all threads, interrupts, and DPCs associated with that workload. This avoids the inefficiencies introduced when these items are distributed among processors, resulting in frequent context switching and loss of cache locality. Full partitioning, that is, partitioning threads and interrupts by processor, is extremely effective in providing linear scaling on SMP systems. Depending on your workload, you can use a combination of the partitioning strategies or implement one strategy at a time.
Strategies for managing threads, interrupts, and DPCs for better overall SMP performance are described in the following sections:

Thread Partitioning.

DPC (Software Interrupt) Partitioning.

Hardware Interrupt Partitioning.

Bypassing I/O Counts.
Note   When using server applications, such as Microsoft SQL Server, Microsoft® Exchange Server, or Microsoft® Internet Information Services, consult the documentation provided with those servers, which might have built-in optimizations.
Thread Partitioning
Partitioning threads to specific processors is called setting a processor affinity mask. The affinity mask contains bits for each processor on the system, defining which processors a particular process or thread can use. When you set affinity for a process to a particular processor, all threads of the process inherit the affinity to the same processor.
Windows 2000 uses soft processor affinity, determining automatically which processor should service threads of a process. The soft affinity for a thread is the last processor on which the thread was run or the ideal processor of the thread. The Windows 2000 soft affinity thread scheduling algorithm enhances performance by improving the locality of reference. However, if the ideal or previous processor is busy, soft affinity allows the thread to run on other processors, allowing all processors to be used to capacity. 
Windows 2000 also provides hard affinity, meaning that the processor affinity mask restricts the threads affected by the affinity mask to the processors specified by the mask. Threads restricted by a hard affinity mask will not run on processors that aren’t included in the affinity mask. Hard affinity used with partitioning can improve performance of an SMP system substantially. However, be cautious when using hard affinity because it might cause the processors to have uneven loads. If processes that have had their affinity set to a specific processor are causing high CPU utilization on that processor while other processors on the system have excess processing capacity, the processes for which a hard affinity has been set might run slower because they cannot use the other processors.
If you want to ensure that a particular process or application doesn’t have to share processing power with other tasks, you can use hard affinity to dedicate that process to one processor, leaving the remaining ones available for other work. This is easy to do using the Set Affinity command in Task Manager. For more information on Task Manager, see “Overview of Performance Monitoring” in this book. 
Figure 10.3 shows the user interface for setting processor affinity.
[image: image3.png]The Processor Afiity seting contols which CPUs the process wil
be alowed to svecule on.

W Ep
W CPU1





Figure 10.3   Processor Affinity Dialog Box in Task Manager
Another processor-partitioning option would be to divide discrete work items, such as tables in a database, among different processors. Consult the documentation accompanying your database software for information on partitioning databases for optimum performance.
Note   Using functions in the Platform SDK, application developers who create applications using job objects can specify that all processes associated with the job object use the same processor affinity.
DPC (Software Interrupt) Partitioning
In an environment with a large volume of network processing, you might want to control DPCs that arise from interrupts generated by your network adapters. The default handling of these DPCs might not allow you to attain optimal performance for your SMP configuration if you have a network-intensive workload. 
Depending on the processor platform detected by the HAL, the operating system might configure different default settings to handle DPC distribution. If Windows 2000 detects that your system supports symmetric interrupt distribution (this includes Pentium Pro or later processors), the network DPCs associated with an interrupt remain on the processor that handled the interrupt. By doing so, the system improves processor cache locality and reduces interprocessor interrupts. 
Note   I/O completion ports are synchronization mechanisms defined in the Microsoft® Win32 API that are used with asynchronous I/O to limit the number of active threads that service I/O on the completion port. By limiting the number of active threads, I/O completion ports allow a pool of threads to be used such that the number of threads that share memory or hold a lock are minimized, thereby improving SMP scaling. The value defining that limit is called the concurrency value. When the concurrency value is set to 0, the completion port allows the number of active threads to be equal to the number of processors on a system. When there is one active thread per processor, there is no need for context switching or memory sharing. If a thread becomes blocked, the completion port allows another thread to be activated. On completion of a work item, the thread returns to the completion port for more work, thereby reducing context switching and improving locality of reference.
On a system with a relatively light network load, keeping the DPC processing on a single processor will improve the cache locality for the network DPCs and prevent network interrupts from occurring while a running thread has a lock on most of the processors. However, this distribution does not work well on systems with significant amounts of network traffic.
You can also add network adapters so that you have one network adapter for each processor. Generally, you should only add a network adapter if you also need the bandwidth, because each additional network adapter has some intrinsic overhead.
However, if one of the processors is nearly always active (if Processor\% Processor Time consistently equals 100 percent) and more than half of its time is spent servicing DPCs (that is, if Processor\% DPC Time exceeds 50 percent), then adding a network card is likely to improve system performance.
If you are adding or upgrading network adapters, choose adapters with drivers that support interrupt moderation or interrupt avoidance. Interrupt moderation allows a processor to process interrupts more efficiently by grouping several interrupts to a single hardware interrupt. Interrupt avoidance allows a processor to continue processing interrupts without new interrupts queued until all pending interrupts are complete.
If your network adapter does not use NDIS miniport drivers, you cannot modify the distribution of DPCs for better performance. For this reason, and because other NDIS optimizations might be unavailable, you might want to consider upgrading your network adapter.
Note   By default, DPCs for disk interrupts remain on the processor that took the interrupt.
Hardware Interrupt Partitioning
Some processor platforms can distribute interrupts across available processors; this capability is called symmetric interrupt distribution. These platforms typically include Pentium Pro and later processors; however, some Pentium processors also have this capability. Although symmetric interrupt distribution is designed as a way to balance interrupt activity, it can sometimes result in poor processor-cache performance. Partitioning interrupts to a specific processor is a strategy for addressing this problem. The Interrupt Filter tool on the Windows 2000 Resource Kit companion CD enables you to set the affinity for interrupts generated from disks or network adapters to a particular processor. This improves efficiency by taking advantage of cache locality, which can be lost when interrupts are serviced by any available processor. See Windows 2000 Professional Help for the Resource Kit tools for information about the requirements for using Interrupt Filter. 
To help improve processor performance, some newer network adapter drivers provide an advanced feature known as interrupt moderation or interrupt avoidance. When the driver detects a high rate of interrupts from the network adapter, the interrupt-moderation code disables interrupts and accumulates the interrupts, sending them to the processor as a group of interrupts. Using a network adapter that supports interrupt moderation can provide better performance if your workload is network-intensive.
Bypassing I/O Counts
By default, Task Manager continuously measures data for process I/O operations that you can select and display under the Processes tab in Task Manager. In a multiprocessor environment, this data is shared by the processors on which the process runs. When a process that generates considerable disk and network I/O, such as a database service, runs on several processors, updating the shared measurements of process I/O and global I/O operations can slow the system. You can improve the performance of I/O-intensive operations on SMP systems if you configure the system to bypass the global I/O counters and Task Manager process I/O counters. To do so, add the CountOperations entry to the registry as a REG_DWORD in HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\I/O System\. Set the entry value to 0. When so configured, Task Manager no longer provides per-process I/O measurements. For more information about Task Manager, see “Overview of Performance Monitoring” earlier in this book.
Upgrading or Adding Processors
If you cannot improve the efficiency of your SMP configuration through the preceding steps, you might want to add or upgrade system processors. When doing so, choose processors with a large secondary (L2) cache. File server applications, Web servers, and databases are a few examples of the many workloads that benefit from a large processor cache. A large processor cache, ranging from 512K to 4MB or larger, is recommended to improve performance on active servers running Web servers or other connection-intensive operations.
Application Design and Multiprocessor Performance
The design of applications and services has a significant influence on the performance of those programs in an SMP environment. This section is a brief summary of techniques that applications designers can implement to maximize the efficiency of their program on multiprocessing systems. More detailed discussions of writing applications that scale well to multiple processors appear on the Microsoft® Developer Network (MSDN).
Application developers can optimize application performance for SMP systems in the following ways:

Keep the number of threads to a minimum. Generally, two to four application or server threads per processor works well.  

Limit processor queue depth. Keep the processor queue length (the number of ready threads waiting to run) in the range of two to three per processor. Depending on the characteristics of the application, such as the time a thread spends blocked or waiting for an I/O operation, the number of threads can be adjusted. 

Use a thread pool rather than one thread per client. It is more efficient to use a thread pool with an I/O completion port rather than to have a thread for each client, with the thread pool partitioned to each processor. 

Use I/O completion ports. I/O completion ports control the number of active threads to yield optimal throughput. Per-processor I/O completion ports can be implemented in an application or server to ensure completion of a work item from start to finish on the same processor.

To minimize the cost of synchronization mechanisms, keep critical sections small and avoid shared data whenever possible. Synchronize shared data but do not try to synchronize code paths. Although critical sections — synchronization objects defined in the Win32 API —  are a very fast method for mutual exclusion within a single multithreaded process, when contention arises, critical sections initiate context switching. Large numbers of critical section or spinlock acquisitions cause heavy data-access sharing and should be avoided. 

Spinlocks are an extension of IRQL on SMP systems. They are used to synchronize kernel and driver data structures among interrupts, DPCs, or threads of execution running concurrently on an SMP computer. A thread acquires a spinlock before accessing protected resources. The spinlock keeps other processors from accessing the critical section (shared data) until the spinlock is released. A processor that is waiting for the spinlock loops until the spinlock is released. 
Another characteristic of spinlocks is the associated IRQL. Attempted acquisition of a spinlock temporarily raises the IRQL of the requesting processor to the IRQL associated with the spinlock. This prevents all lower IRQL activity on the same processor from running until IRQL is lowered. Interrupts at a higher IRQL can preempt the executing thread. In a driver, if IRQL is already at the desired level, use the spinlock acquire-and-release APIs that don’t change IRQL. For more information about spinlocks and associated IRQLs, see the Driver Development Kit link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

Avoid nested locks. Nesting locks can cause performance problems and reliability problems, such as deadlock. Always try to avoid nesting critical sections and spinlocks. 

Partition the workload, including interrupts. Whenever possible, partition the workload a server or application handles. Partitioning allows very effective use of system resources. 
In addition, intensive memory access due to copying, zeroing (for C2 security), and checksum operations reduces the ability to scale effectively across multiple processors. You can identify some of these problems through profiling. For more information about profiling tools, see the Platform Software Development Kit (SDK) link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.

Change applications to prevent data that might be used concurrently by threads on different processors from residing in the same cache block, or use processor affinity to force use of updated cache blocks only on a single processor.

Use asynchronous, overlapped I/O. In overlapped mode, a server application can initiate multiple I/O requests without waiting for previous requests to complete, thereby enabling it to service multiple clients asynchronously using a single thread. 
Network Load Balancing and Scaling
Another scaling solution is provided by Network Load Balancing. With Network Load Balancing, two or more computers are combined to provide availability and scalability benefits to mission-critical applications. 
A concept called shared nothing supports scalability in clusters. Clusters that use shared nothing have their own system bus and access to disks and networks. This reduces the sharing issues of SMP systems because additional resources are available without extra arbitration. In general, shared nothing is similar to partitioning in an SMP environment except that the resource access latency is lessened. However, if cluster members need to communicate, the latency of communication is much larger than in an SMP system. In addition, if sharing is necessary (that is, the cluster is not a shared-nothing environment), the cost of sharing in a cluster is much higher than the cost of sharing in an SMP system.
