Chapter 3 - File Systems
Microsoft® Windows® 2000 supports the NTFS file system, two file allocation table (FAT) file systems (FAT16 and FAT32), the compact disc file system (CDFS), and the Universal Disk Format (UDF). The structures of the volumes formatted by each of these file systems, as well as the way each file system organizes data on the disk, are significantly different. The capabilities and limitations of these file systems must be reviewed to determine their comparative features. The version of NTFS included with Windows 2000 includes reparse points, the change journal, encryption, sparse file support, and several other new features.
In This Chapter
About Windows 2000 File Systems
Comparing FAT16, FAT32, and NTFS
File and Folder Compression
NTFS Recoverability
Features Built on Reparse Points
File System Tools
Related Information in the Resource Kit

For information about disks, see “Disk Concepts and Troubleshooting” in this book.

For information about disk storage, see “Data Storage and Management” in this book.

For information about system recovery, see “Repair, Recovery, and Restore” in this book.
About Windows 2000 File Systems
An operating system’s ability to access files on a volume depends on the file system with which the volume was formatted. Table 3.1 shows the file system format used by various operating systems.
Table 3.1 Operating System and File System Compatibility
Operating system
File System Format of Volume
Windows 2000
NTFSFAT16FAT32
Microsoft® Windows NT®
NTFSFAT16
Microsoft® Windows® 95 OEM Service Release 2 (OSR2) and Microsoft® Windows® 98
FAT16FAT32
Windows 95 prior to version OSR2
FAT16
Microsoft® MS-DOS®
FAT16
Note FAT16 and FAT32 are referred to synonymously as FAT unless the differences between them must be noted.
You can use long and short file names in both NTFS and FAT volumes. A long file name can be up to 256 characters long. Short file names contain an eight-letter file name and a three-letter file name extenstion and use the format xxxxxxxx.yyy. Short file names are compatible with MS-DOS.
FAT File System
The FAT file system has the file allocation table located at the beginning of a logical volume. FAT was designed for small disks and simple folder structures. Two copies of the file allocation table are stored on the volume. In the event that one copy of the file allocation table is corrupted, the other file allocation table is used.
FAT16 File System
FAT16 is included in Windows 2000 for the following reasons:

It provides backward compatibility in the form of an upgrade path for earlier versions of Windows-compatible products.

It is compatible with most other operating systems.
For Windows 2000 and Windows NT, the maximum size for a FAT16 volume is 4,095 megabytes (MB).
A volume formatted with FAT16 is allocated in clusters. The default cluster size is determined by the volume size, and can be as large as 64 kilobytes (KB). The cluster size must be a power of 2 between 512 and 65,536 bytes. Table 3.2 shows the default cluster sizes for FAT16 volumes. You can specify a different cluster size if you format the volume with the format command from the command prompt. However, the size you specify must be listed in Table 3.2.
Table 3.2 FAT16 Cluster Sizes
Volume Size
Sectors Per Cluster
Cluster Size
0 MB–32 MB
1
512 bytes
33 MB–64 MB
2
1 KB
65 MB–128 MB
4
2 KB
129 MB–255 MB
8
4 KB
256 MB–511 MB
16
8 KB
512 MB–1,023 MB
32
16 KB
1,024 MB–2,047 MB
64
32 KB
2,048 MB–4,095 MB
128
64 KB
FAT16 is not recommended for volumes larger than 511 MB because, when relatively small files are placed on a FAT16 volume, FAT uses disk space inefficiently. You cannot use FAT16 on volumes larger than 4 gigabytes (GB), regardless of the cluster size.
Note On volumes with fewer than 32,680 sectors, the cluster sizes can be up to 8 sectors per cluster. The format program, whether you format the volume using Disk Management or by typing format at the command prompt, creates a 12-bit FAT. Volumes less than 16 MB are usually formatted for a 12-bit FAT, but the exact size depends on the disk geometry. The disk geometry also determines the point at which a larger cluster size is needed because the number of clusters on the volume must fit into 16 bits. Therefore, you might have a 33-MB volume that still has only 1 sector per cluster.
FAT12 is the original implementation of FAT and is intended for very small media. The file allocation table for FAT12 is smaller than the file allocation table for FAT16 and FAT32, because it uses less space for each entry. This leaves more space for data. All 5.25-inch floppy disks are formatted with FAT12, and 1.44-MB 3.5-inch floppy disks are generally formatted with FAT12. Volumes on Iomega Zip and Jaz drives are formatted with FAT16.
Structure of a FAT16 Volume
Figure 3.1 illustrates how FAT maps out clusters on a volume. The file allocation table (areas FAT1 and FAT2 in Figure 3.1) identifies each cluster in the volume as one of the following:

Unused

Cluster in use by a file

Bad cluster

Last cluster in a file
[image: image1.png]Boot | [FAT2

ot
Boct O cate)| Eeher | Other Folders and al Files

Figure 3.1 Organization of a FAT Volume
The only difference between the root folder and other folders is that the root folder is at a specified location and has a fixed number of entries (for a hard disk). The number of entries on a floppy disk depends on the size of the disk.
Note Each folder and file in the root folder uses one or more entries. For example, if the fixed number of entries is 512 and you have 100 folders, you can only create 412 files.
Folders have a 32-byte entry for each file and folder contained in the folder. Assuming short file names are used, the entry includes the following information:

Name (8.3) xxxxxxxx.yyy. (88 bits)

Attribute byte (8 bits of information, described later in this section).

One reserved byte.

Create time (24 bits).

Create date (16 bits).

Last access date (16 bits).

Two reserved bytes.

Last modified time (16 bits).

Last modified date (16 bits).

Starting cluster number in the file allocation table (16 bits).

File size (32 bits).
In a FAT folder structure, files are given the first available location on the volume. The starting cluster number is the address of the first cluster used by the file. Each cluster contains a pointer to the next cluster in the file, or an end-of-file (EOF) indicator at (0xFFFF) which indicates that this cluster is the end of the file. These pointers and end-of-file indicators are shown in Figure 3.2.
[image: image2.png]

Figure 3.2 Files on a FAT Volume
Figure 3.2 shows three files in a folder. File1.txt is large enough to use three clusters. File2.txt is a fragmented file that also requires three clusters. The third file, File3.txt, fits completely in one cluster. In each case, the folder entry points to the first cluster of the file.
The information in the folder is used by all operating systems that support FAT. Windows 2000 can store additional time stamps in a FAT folder entry. These time stamps show when the file was created or last accessed.
Because all entries in a directory are the same size, the attribute byte for each entry in a directory describes what kind of entry it is. For example, one bit indicates that the entry is for a subdirectory and another bit marks the entry as a volume. Typically, only the operating system controls the settings of these bits.
The attribute byte includes four bits that can be turned on or off by the user — archive, system, hidden, and read-only.
FAT32 File System
Support for FAT32 is new in Windows 2000. FAT16 supports volumes up to 4 GB, whereas theoretically FAT32 can manage volumes up to 2 terabytes. The FAT32 on-disk format and features on Windows 2000 are similar to those on Windows 95 OSR2 and Windows 98.
The size of a FAT32 cluster can range in size from 1 sector (512 bytes) to 64 sectors (32 KB), incremented in powers of 2.
Since FAT32 requires 4 bytes to store cluster values, many internal and on-disk data structures have been revised or expanded. Most programs are unaffected by these changes; however, disk utilities which read the on-disk format must be updated to support FAT32.
Two application programming interfaces (APIs) are disabled on FAT32. Since the BIOS parameter block (BPB) structure grows from 25 bytes on FAT16 to 53 bytes on FAT32, and FSCTL_QUERY_FAT_BPB is defined to return only as much of the boot sector as contains the 25 byte form of the BPB, it is disabled on FAT32. To retrieve the BPB on FAT32, applications should read the volume directly. This also works for FAT16. Extended attributes are disabled on FAT32 since increasing the cluster number to 4 bytes requires the use of the field previously used to index the extended attribute database.
Structure of a FAT32 Volume
The main difference between FAT16 and FAT32 is the logical partition size. FAT32 breaks the 2-GB logical drive limitation of FAT16 volumes by extending a single logical drive capacity to at least 127 GB. If you have a 2-GB FAT16 drive, you must use a 32-KB cluster. With FAT32, the range for a 4-KB cluster, for example, includes drive sizes between 512 MB and 8 GB.
The largest possible file for a FAT32 drive is 4 GB minus 2 bytes. FAT32 uses 4 bytes per cluster within the file allocation table. This differs from FAT16, which uses 2 bytes per cluster within the file allocation table. Table 3.3 shows the default cluster sizes for FAT32.
Table 3.3 FAT32 Cluster Sizes
Partition Size
Default Cluster Size
Less than 8 GB
4 K
Greater than or equal to 8 GB, and less than 16 GB
8 K
Greater than or equal to 16 GB, and less than 32 GB
16 K
Greater than or equal to 32 GB
32 K
A FAT32 volume must have at least 65,527 clusters. Also, the cluster size on a FAT32 volume cannot be such that the file allocation table is greater than (16 MB – 64 KB)/4, or almost 4 million clusters.
FAT16 and FAT32 do not scale well. As the volume gets bigger, the file allocation table gets bigger, which dramatically increases the amount of time it takes Windows 2000 to compute how much free space is on the boot volume when the system is restarted.
For this reason, you may not create a FAT32 volume larger than 32 GB using the Format utility. However, the Windows 2000 Fastfat driver enables you to mount and fully support a FAT32 volume larger than 32 GB.
Use NTFS to format volumes larger than these. For more information about why you should format all Windows 2000 partitions with NTFS, see “Advantages of NTFS” later in this chapter.
File Names on FAT Volumes
Files created or renamed on FAT volumes use attribute bits to support long file names in a way that does not interfere with how MS-DOS gains access to the volume.
Whenever you create a file with a long file name, Windows 2000 creates a conventional 8.3 name for the file and one or more secondary folder entries for the file, one for each 13 characters in the long file name. Each secondary folder entry stores a corresponding part of the long file name in Unicode.
Windows 2000 marks the secondary folder entries as part of a long file name by setting the volume ID, read-only, system, and hidden attribute bits. MS-DOS generally ignores folder entries with all four of these attribute bits set, so these entries are invisible to these operating systems. MS-DOS accesses the file by using the conventional 8.3 file name contained in the folder entry for the file.
Figure 3.3 shows all of the folder entries for the file Thequi~1.fox, which has a long name of The quick brown.fox. The long name is in Unicode, so each character in the name uses 2 bytes in the folder entry. The attribute field for the long-name entries has the value 0x0F. The attribute field for the short name has the value 0x20.
[image: image3.png]2nd Long Entry
(And Last)

loxez| n ¢ o

ovor Mn’cm 5

0X0000 OXFFFF OXFFFF OXFFFF OXFFFF | 00000 | OXFFFF OxFFFF

joxoF oo =k

i B K [T o

TOH E Q U I ~ 1 F 0 % |00 NT|CresteTime

= EE

Greste | nccess | 0:0000 | wodfied| modied| | e size
Dare Time | Date

Shart Entry

1st Long Entry

Figure 3.3 Long File Name on a FAT Volume
Note Windows NT and Windows 2000 do not use the same algorithm to create long and short file names as Windows 95 and Windows 98. However, on computers that multiple-boot these operating systems, files that you create when running one operating system can be accessed when running the other.
For information about how Windows 2000 creates short file names, see “Using Long File Names” later in this chapter.
By default, Windows 2000 supports long file names on FAT volumes. You can prevent a FAT file system from creating long file names by setting the value of the Win31FileSystem registry entry (in HKEY_LOCAL_MACHINE\System
\CurrentControlSet\Control\FileSystem\Win31FileSystem) to 1.
Caution Do not use a registry editor to edit the registry directly unless you have no alternative. The registry editors bypass the standard safeguards provided by administrative tools. These safeguards prevent you from entering conflicting settings or settings that are likely to degrade performance or damage your system. Editing the registry directly can have serious, unexpected consequences that can prevent the system from starting and require that you reinstall Windows 2000. To configure or customize Windows 2000, use the programs in Control Panel or Microsoft Management Console (MMC) whenever possible.
This value prevents Windows 2000 from creating new long file names on all FAT volumes, but it does not affect existing long file names.
Using FAT with Windows 2000
FAT16 works the same way in Windows 2000 as it does in MS-DOS, Windows 3.x, Windows 95, and Windows 98. FAT32 works the same way in Windows 2000 as it does in Windows 95 OSR2 and Windows 98. In fact, you can install Windows 2000 on an existing FAT primary partition or logical drive. When running Windows 2000, you can move or copy files between FAT and NTFS volumes.
Note You cannot use Windows 2000 with any compression or partitioning software that requires disk drivers to be loaded by MS-DOS.
The NTFS File System
Windows 2000 comes with a new version of NTFS. This newest version of NTFS provides performance, reliability, and functionality not found in FAT. Some new features in Windows 2000, such as Active Directory™ directory service and the storage features based on reparse points are only available on volumes formatted with NTFS.
NTFS also includes security features required for file servers and high-end personal computers in a corporate environment, and data access control and ownership privileges important for data integrity.
Multiple Data Streams
NTFS supports multiple data streams, where the stream name identifies a new data attribute on the file. A handle can be opened to each data stream. A data stream, then, is a unique set of file attributes. Streams have separate opportunistic locks, file locks, and sizes, but common permissions.
This feature enables you to manage data as a single unit. The following is an example of an alternate stream:
myfile.dat:stream2
A library of files might exist where the files are defined as alternate streams, as in the following example:
library:file1
 :file2
 :file3
A file can be associated with more than one application at a time, such as Microsoft® Word and Microsoft® WordPad. For instance, a file structure like the following illustrates file association, but not multiple files:
program:source_file
 :doc_file
 :object_file
 :executable_file
You can use the Win32 advanced programming interface (API) CreateFile to create an alternate data stream. Or, at the command prompt, you can type commands such as:
echo text>program:source_file
more <program:source_file
Caution Because NTFS is not supported on floppy disks, when you copy an NTFS file to a floppy disk, data streams and other attributes not supported by FAT are lost without warning.
Reparse Points
Reparse points are new file system objects in the version of NTFS included with Windows 2000. Reparse points have a definable attribute containing user-controlled data and are used to extend functionality in the input/output (I/O) subsystem.
For more information about reparse points, see the Platform Software Development Kit (SDK) link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
Change Journal
The change journal is used by NTFS to provide a persistent log of all changes made to files on the volume. For each volume, NTFS uses the change journal to track information about added, deleted, and modified files. The change journal is much more efficient than time stamps or file notifications for determining changes in a given namespace.
The change journal is implemented as a sparse stream in which only a small active range uses any disk allocation. The active range initially begins at offset 0 in the stream and moves monotonically forward. The unique sequence number (USN) of a particular record represents its virtual offset in the stream. As the active range moves forward through the stream, earlier records are deallocated and become unavailable. The size of the active range in a sparse file can be adjusted. For more information about the change journal and sparse files, see the Platform Software Development Kit (SDK) link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
Encryption
File and directory-level encryption is implemented in the version of NTFS included with Windows 2000 for enhanced security in NTFS volumes. Windows 2000 uses Encrypting File System (EFS) to store data in encrypted form, which provides security when the storage media are removed from a system running Windows 2000. For more information about EFS, see the Microsoft® Windows® 2000 Server Resource Kit Distributed Systems Guide.
Sparse File Support
Sparse files allow programs to create very large files, but to consume disk space only as needed. A sparse file is a file with an attribute that causes the I/O subsystem to allocate the file’s meaningful (nonzero) data. All nonzero data is allocated on disk, whereas all nonmeaningful data (large strings of data composed of zeros) is not. When a sparse file is read, allocated data is returned as it was stored, and nonallocated data is returned, by default, as zeros in accordance with the C2 security requirement specification.
NTFS includes full sparse file support for both compressed and uncompressed files. NTFS handles read operations on sparse files by returning allocated data and sparse data. It is possible to read a sparse file as allocated data and a range of data without having to retrieve the entire data set, although, by default, NTFS returns the entire data set.
You can set a user-controlled file system attribute to take advantage of the sparse file function in NTFS. With the sparse file attribute set, the file system can deallocate data from anywhere in the file and, when an application calls, yield the zero data by range instead of storing and returning the actual data. File system APIs allow for the file to be copied or backed as actual bits and sparse stream ranges. The net result is efficient file system storage and access. Figure 3.4 shows how data is stored with and without the sparse file attribute set.
[image: image4.png]Without sparse file attribute set

Figure 3.4 Sparse Data Storage
Disk Quotas
Disk quotas are a new feature in NTFS that provide more precise control of network-based storage. Disk quotas are implemented on a per-volume basis and enable both hard and soft storage limits to be implemented on a per-user basis. For more information about disk quotas, see “Data Storage and Management” in this book.
The introduction of distributed file system (Dfs), NTFS directory junctions, and volume mount points also creates situations where logical directories do not have to correspond to the same physical volume. Available disk space is based on user context, and the space reported for a volume is not necessarily representative of the space available to the user. For this reason, do not rely on space queries to make assumptions about the amount of available disk space in directories other than the current one. For more information about Dfs, see the Distributed Systems Guide. For more information about volume mount points, see “Volume Mount Points” later in this chapter.
Distributed Link-Tracking
Windows 2000 provides a distributed link-tracking service that enables client applications to track link sources that have been moved locally or within a domain. Clients that subscribe to this link-tracking service can maintain the integrity of their references because the objects referenced can be moved transparently. Files managed by NTFS can be referenced by a unique object identifier. Link tracking stores a file’s object identifier as part of its tracking information.
The distributed link-tracking service tracks shell shortcuts and OLE links within NTFS volumes on computers running Windows 2000. For example, if a shell shortcut is created to a text document, distributed link-tracking allows the shortcut to remain correct, even if the target file moves to a new drive or computer system. Similarly, in a Microsoft® Word document that contains an OLE link to a Microsoft® Excel spreadsheet, the link remains correct even if the Excel file moves to a new drive or computer system.
If a link is made to a file on a volume formatted with the version of NTFS included with Windows 2000, and the file is moved to any other volume with the same version of NTFS within the same domain, the file is found by the tracking service, subject to time considerations. Additionally, if the file is moved outside the domain or within a workgroup, it is likely to be found.
Converting to Windows 2000 File Systems
The on-disk format for NTFS has been enhanced in Windows 2000 to enable new functionality. The upgrade to the new on-disk format occurs when Windows 2000 mounts an existing NTFS volume. The upgrade is quick and automatic; the conversion time is independent of volume size. Note that FAT volumes can be converted to NTFS format at any time using the Convert.exe utility.
Important Performance of volumes that have been converted from FAT is not as high as volumes that were originally formatted with NTFS.
Multiple Booting of Windows NT and Windows 2000
Your ability to access your NTFS volumes when you multiple-boot Windows NT and Windows 2000 depends on which version you are using. (Redirected clients using NTFS volumes on file and print servers are not affected.)
Windows NT Compatibility with the Version of NTFS Included with Windows 2000
When a Windows 2000 volume is mounted on a system running Windows NT 4.0 Service Pack 4, most features of the version of NTFS included with Windows 2000 are not available. However, most read and write operations are permitted if they do not make use of any new NTFS features. Features affected by this configuration include the following:

Reparse points. Windows NT cannot use any features based on reparse points, such as Remote Storage and volume mount points.

Disk quotas. When running Windows NT, Windows 2000 disk quotas are ignored. This allows you to allocate more disk space than is allowed by your quota.

Encryption. Windows NT cannot perform any operations on files encrypted by Windows 2000.

Sparse files. Windows NT cannot perform any operations on sparse files.

Change journal. Windows NT ignores the change journal. No entries are logged when files are accessed.
Cleanup Operations on Windows NT Volumes
Because files on volumes formatted with the version of NTFS included with Windows 2000 can be read and written to by Windows NT, Windows 2000 may need to perform cleanup operations to ensure the consistency of the data structures of a volume after it was mounted on a computer that is running Windows NT. Features affected by cleanup operations are explained below.
Disk quotas If disk quotas are turned off, Windows 2000 performs no cleanup operations. If disk quotas are turned on, Windows 2000 cleans up the quota information.
If a user exceeds the disk quota while the NTFS volume is mounted by a Windows NT 4.0 system, all further disk allocations of data by that user will fail. The user can still read and write data to any existing file, but will not be able to increase the size of a file. However, the user can delete and shrink files. When the user gets below the assigned disk quota, he or she can resume disk allocations of data. The same behavior occurs when a system is upgraded from a Windows NT system to a Windows 2000 system with quotas enforced.
Reparse points Because files that have reparse points associated with them cannot be accessed by computers that are running Windows NT 4.0 or earlier, no cleanup operations are necessary in Windows 2000.
Encryption Because encrypted files cannot be accessed by computers that are running Windows NT 4.0 or earlier, no cleanup operations are necessary.
Sparse files Because sparse files cannot be accessed by computers that are running Windows NT 4.0 or earlier, no cleanup operations are necessary.
Object identifiers Windows 2000 maintains two references to the object identifier. One is on the file; the other is in the volume-wide object identifier index. If you delete a file with an object identifier on it, Windows 2000 must scan and clean up the leftover entry in the index.
Change journal Computers that are running Windows NT 4.0 or earlier do not log file changes in the change journal. When Windows 2000 starts, the change journals on volumes accessed by Windows NT are reset to indicate that the journal history is incomplete. Applications that use the change journal must have the ability to accept incomplete journals.
Structure of an NTFS Volume
Like FAT, NTFS uses clusters as the fundamental unit of disk allocation. In the Disk Management snap-in, you can specify a cluster size of up to 4 KB. If you type format at the command prompt to format your NTFS volume, but do not specify an allocation unit size using the /A:<size> switch, the values in Table 3.4 will be used.
Table 3.4 Default Cluster Sizes for NTFS
Volume Size
Sectors Per Custer
Default Cluster Size
512 MB or less
1
512 bytes
513 MB–1,024 MB (1 GB)
2
1,024 bytes (1 KB)
1,025 MB–2,048 MB (2 GB)
4
2,048 bytes (2 KB)
Greater than 2,049 MB
8
4 KB
Note Windows 2000, like Windows NT 3.51 and Windows NT 4.0, supports file compression. Since file compression is not supported on cluster sizes above 4 K, the default NTFS cluster size for Windows 2000 never exceeds 4 K. For more information about NTFS compression, see “File and Folder Compression” later in this chapter.
Boot Sector
The first information found on an NTFS volume is the boot sector. The boot sector starts at sector 0 and can be up to 16 sectors long. It consists of two structures:

The BIOS parameter block, which contains information on the volume layout and file system structures.

Code that describes how to find and load the startup files for the operating system being loaded. For Windows 2000, this code loads the file Ntldr. For more information about the boot sector, see “Disk Concepts and Troubleshooting” in this book.
Master File Table and Metadata
When a volume is formatted with NTFS, a Master File Table (MFT) file and other pieces of metadata are created. Metadata are the files NTFS uses to implement the file system structure. NTFS reserves the first 16 records of the MFT for metadata files.
Note The data segment locations for both $Mft and $MftMirr are recorded in the boot sector. If the first MFT record is corrupted, NTFS reads the second record to find the MFT mirror file. A duplicate of the boot sector is located at the end of the volume.
Table 3.5 lists and briefly describes the metadata stored in the MFT.
Table 3.5 Metadata Stored in the Master File Table
System File
File Name
MFT Record
Purpose of the File
Master file table
$Mft
0
Contains one base file record for each file and directory on an NTFS volume. If the allocation information for a file or directory is too large to fit within a single record, other file records are allocated as well.
Master file table 2
$MftMirr
1
A duplicate image of the first four records of the MFT. This file guarantees access to the MFT in case of a single-sector failure.
Log file
$LogFile
2
Contains a list of transaction steps used for NTFS recoverability. Log file size depends upon the volume size. It is used by Windows 2000 to restore consistency to NTFS in the event of a system failure. For more information about the log file, see “NTFS Recoverability” later in this chapter.
Volume
$Volume
3
Contains information about the volume, such as the volume label and the volume version.
Attribute definitions
$AttrDef
4
A table of attribute names, numbers, and descriptions.
Root file name index
$
5
The root directory.
Cluster bitmap
$Bitmap
6
A representation of the volume showing which clusters are in use.
Boot sector
$Boot
7
Includes the bootstrap for the volume if it is a bootable volume.
Bad cluster file
$BadClus
8
Contains bad clusters for the volume.
Security file
$Secure
9
Contains unique security descriptors for all files within a volume.
Upcase table
$Upcase
10
Converts lowercase characters to matching Unicode uppercase characters.
NTFS extension file
$Extend
11
Used for various optional extensions such as quotas, reparse point data, and object identifiers.

12–15
Reserved for future use.
The remaining records of the MFT contain the file and directory records for each file and directory on the volume.
NTFS creates a file record for each file and a directory record for each directory created on an NTFS volume. The MFT includes a separate file record for the MFT itself. These file and directory records are stored on the MFT. The attributes of the file are written to the allocated space in the MFT. Besides file attributes, each file record contains information about the position of the file record in the MFT.
Each file usually uses one file record. However, if a file has a large number of attributes or becomes highly fragmented, it may need more than one file record. If this is the case, the first record for the file, called the base file record, stores the location of the other file records required by the file. Small files and directories (typically 1,500 bytes or smaller) are entirely contained within the file’s MFT record.
Directory records contain index information. Small directories might reside entirely within the MFT structure, while large directories are organized into B-tree structures and have records with pointers to external clusters that contain directory entries that could not be contained within the MFT structure.
NTFS File Attributes
Every allocated sector on an NTFS volume belongs to a file. Even the file system metadata is part of a file. NTFS views each file (or folder) as a set of file attributes. Elements such as the file’s name, its security information, and even its data, are all file attributes. Each attribute is identified by an attribute type code and, optionally, an attribute name.
When a file’s attributes can fit within the MFT file record for that file, they are called resident attributes. Information such as file name and time stamp are always resident attributes. When the information for a file is too large to fit in its MFT file record, some of the file attributes are nonresident. Nonresident attributes are allocated one or more clusters of disk space and stored as an alternate data stream in the volume. NTFS creates the Attribute List attribute to describe the location of both resident and nonresident attribute records.
Table 3.6 lists the file attributes defined by NTFS, although other file attributes might be defined in the future.
Table 3.6 NTFS File Attribute Types
Attribute Type
Description
Standard Information
Includes information such as time stamp and link count.
Attribute List
Lists the location of all the attribute records that do not fit in the MFT record.
File Name
A repeatable attribute for both long and short file names. The long name of the file can be up to 255 Unicode characters. The short name is the MS-DOS-readable, 8.3, case-insensitive name for the file. Additional names, or hard links, required by POSIX can be included as additional file name attributes.
Security Descriptor
Shows information about who owns the file and who can access the file.
Data
Contains file data. NTFS allows multiple data attributes per file. Each file typically has one unnamed data attribute. A file can also have one or more named data attributes, each using a particular syntax.
Object ID
A volume-unique file identifier. Used by the link tracking service. Not all files have object identifiers.
Logged Tool Stream
Similar to a data stream, but operations on a logged tool stream are logged to the NTFS log file just like NTFS metadata changes. Used by EFS.
Reparse Point
Used for directory junction points and volume mount points. They are also used by file system filter drivers to mark certain files as special to that driver.
Index Root
Used to implement folders and other indexes.
Index Allocation
Used to implement folders and other indexes.
Bitmap
Used to implement folders and other indexes.
Volume Information
Used only in the $Volume system file. Contains the volume version.
Volume Name
Used only in the $Volume system file. Contains the volume label.
MS-DOS-Readable File Names on NTFS Volumes
By default, Windows NT and Windows 2000 generate MS-DOS-readable file names on all NTFS volumes. To improve performance on volumes with many long, similar names, you can change the default value of the registry entry NtfsDisable8dot3NameCreation (in HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\FileSystem) to 1.
Windows 2000 does not generate short (8.3) file names for files created by POSIX-based applications on an NTFS volume, regardless of the value of the NtfsDisable8dot3NameCreation registry entry. This means that MS-DOS-based and 16-bit Windows-based applications cannot view these file names if they are not valid 8.3 file names. Use standard MS-DOS 8.3 naming conventions if you want to use files that are created by a POSIX application with MS-DOS-based or Windows-based applications.
Using Long File Names
File names on Windows NT and Windows 2000 platforms can be up to 255 characters, and can contain spaces, multiple periods, and special characters that are forbidden in MS-DOS file names. Windows 2000 makes it possible for other operating systems to access files with long names by automatically generating an MS-DOS-readable (8.3) name for each file. Files are accessible over a network by computers using MS-DOS and Windows 3.x, as well as by computers using Windows 95, Windows 98, Windows NT, and Windows 2000 operating systems.
By creating 8.3 file names for files, Windows 2000 also enables MS-DOS-based and Windows 3.x–based applications to recognize and load files that have long file names. In addition, when an application saves a file on a computer running Windows 2000, both the 8.3 file name and long file name are retained.
If the long name of a file or folder contains spaces, you must surround the name with quotation marks. For example, if you have a program called Dump Disk Files that you want to run from the command line and you enter the name without quotation marks, it generates the error message “Cannot find the program Dump or one of its components.”
You must also use quotation marks when a path typed at the command line includes spaces, as in the following example:
move "c:\This month's reports*.*" "c:\Last month's reports"
Use wildcard characters such as the asterisk (*) and question mark (?) carefully in conjunction with the del and copy command-line commands. Windows 2000 searches both long and short file names for matches to the wildcard character combination you specify, which can cause additional files to be deleted or copied.
Both FAT and NTFS use the Unicode character set for their names, which contain several forbidden characters that MS-DOS cannot read in any file name. To generate a short MS-DOS-readable file name for a file, Windows 2000 deletes all of these characters from the long file name and removes any spaces. Because an MS-DOS-readable file name can have only one period, Windows 2000 also removes all extra periods from the file name. Next, Windows 2000 truncates the file name, if necessary, to six characters and appends a tilde (~) and a number. For example, each nonduplicate file name is appended with ~1. Duplicate file names end with ~2, then ~3, and so on. After the file names are truncated, the file name extensions are truncated to three or fewer characters. Finally, when displaying file names at the command line, Windows 2000 translates all characters in the file name and extension to uppercase.
Note You can permit extended characters by setting the value of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsAllowExtendedCharacterIn8dot3Name to 1.
When there are five or more files that would result in duplicate short file names, Windows 2000 uses a slightly different method for creating short file names. For the fifth and subsequent files, Windows 2000:

Uses only the first two letters of the long file name.

Generates the next four letters of the short file name by mathematically manipulating the remaining letters of the long file name.

Appends ~1 (or another number, if necessary, to avoid a duplicate file name) to the result.
This method provides substantially improved performance when Windows 2000 must create short file names for a large number of files with similar long file names. Windows 2000 uses this method to create short file names for both FAT and NTFS files.
Table 3.7 shows the short file names for files that were created in the order test 1 through test 6.
Table 3.7 Short File Names Created by Windows 2000 – Example One
Long File Name
Short File Name
This is test 1.txt
THISIS~1.TXT
This is test 2.txt
THISIS~2.TXT
This is test 3.txt
THISIS~3.TXT
This is test 4.txt
THISIS~4.TXT
This is test 5.txt
TH0FF9~1.TXT
This is test 6.txt
THFEF5~1.TXT
If the long file names in Table 3.7 are created in a different order, their short file names are different, as shown in Table 3.8.
Table 3.8 Short File Names Created by Windows 2000 – Example Two
Long File Name
Short File Name
This is test 2.txt
THISIS~1.TXT
This is test 3.txt
THISIS~2.TXT
This is test 1.txt
THISIS~3.TXT
This is test 4.txt
THISIS~4.TXT
This is test 5.txt
TH0FF9~1.TXT
This is test 6.txt
THFEF5~1.TXT
To see both the long and short file names for each file in the folder, type the following on the command line:
dir /x
Compact Disc File System
Windows 2000 provides support for the ISO 9660–compliant CDFS, which supports long file names as listed in the ISO 9660 Level 2 standards.
When creating a CD-ROM to be used on Windows 2000, you must adhere to the following standards:

All directory and file names must have fewer than 32 characters.

All directory and file names must be in capital letters.

The directory tree cannot exceed 8 levels from the root.

File name extensions are not mandatory.
Important CDFS adheres to ISO 9660 standards and therefore does not support lowercase file names. When you use CDFS to access a file or directory with a lowercase file name on a CD-ROM, you get a “File not found” error message.
Universal Disk Format
The UDF is new for Windows 2000. UDF is an ISO 13346–compliant, standards-based file system designed for interchanging data on digital video disk (DVD) and CD-ROM. The primary function of UDF is to support read-only DVD-ROM media.
Note Windows 2000 reads only UDF versions 1.02 and 1.50.
Comparing FAT16, FAT32, and NTFS
You can use FAT16, FAT32, NTFS, or a combination of these file systems on a Windows 2000 system. The choice you make depends on such things as:

How the computer is used.

The hardware platform.

The size and number of hard disks.

Security considerations.
Important It is recommended that you format all Windows 2000 partitions with NTFS except certain multiple-boot configurations. For more information, see “Advantages of NTFS” later in this chapter.
Comparing FAT File Systems
The numerals in the names FAT16 and FAT32 refer to the number of bits required for a file allocation table entry.

FAT16 uses a 16-bit file allocation table entry (216 allocation units).

Windows 2000 reserves the first 4 bits of a FAT32 file allocation table entry, which means FAT32 has a maximum of 228 allocation units. However, this number is capped at 32 GB by the Windows 2000 format utilities.
FAT16 vs. FAT32
Table 3.9 provides a comparison of FAT16 and FAT32 cluster sizes according to drive size.
Table 3.9 Cluster Sizes of FAT16 and FAT32
Drive Size
Default FAT16 Cluster Size
Default FAT32 Cluster Size
260 MB–511 MB
8 KB
Not supported
512 MB–1,023 MB
16 KB
4 KB
1,024 MB–2 GB
32 KB
4 KB
2 GB–8 GB
Not supported
4 KB
8 GB–16 GB
Not supported
8 KB
16 GB–32 GB
Not supported
16 KB
> 32 GB
Not supported
32 KB
There are additional differences between FAT32 and FAT16:

FAT32 allows finer allocation granularity (approximately 4 million allocation units per volume).

FAT32 allows the root directory to grow (FAT16 holds a maximum of 512 entries, and the limit can be even lower due to the use of long file names in the root folder).
Advantages of FAT16
Advantages of FAT16 are:

MS-DOS, Windows 95, Windows 98, Windows NT, Windows 2000, and some UNIX operating systems can use it.

There are many tools available to address problems and recover data.

If you have a startup failure, you can start the computer with an MS-DOS bootable floppy disk.

It is efficient, both in speed and storage, on volumes smaller than 256 MB.
Disadvantages of FAT16
Disadvantages of FAT16 are:

The root folder can manage a maximum of 512 entries. The use of long file names can significantly reduce the number of available entries.

FAT16 is limited to 65,536 clusters, but because certain clusters are reserved, it has a practical limit of 65,524. Each cluster is fixed in size relative to the logical drive. If both the maximum number of clusters and their maximum size (32 KB) are reached, the largest drive is limited to 4 GB on Windows 2000. To maintain compatibility with MS-DOS, Windows 95, and Windows 98, a FAT16 volume should not be larger than 2 GB.

The boot sector is not backed up.

There is no built-in file system security or file compression with FAT16.

FAT16 can waste file storage space in larger drives as the size of the cluster increases. The space allocated for storing a file is based on the size of the cluster allocation granularity, not the file size. A 10-KB file stored in a 32-KB cluster wastes 22 KB of disk space.
Advantages of FAT32
FAT32 allocates disk space much more efficiently than previous versions of FAT. Depending on the size of your files, there is a potential for tens and even hundreds of megabytes more free disk space on larger hard disk drives. In addition, FAT32 provides the following enhancements:

The root folder on a FAT32 drive is now an ordinary cluster chain, so it can be located anywhere on the volume. For this reason, FAT32 does not restrict the number of entries in the root folder.

It uses space more efficiently than FAT16. FAT32 uses smaller clusters (4 KB for drives up to 8 GB), resulting in 10 to 15 percent more efficient use of disk space relative to large FAT16 drives. FAT32 also reduces the resources necessary for the computer to operate.

FAT32 is more robust than FAT16. FAT32 has the ability to relocate the root directory and use the backup copy of the FAT instead of the default copy. In addition, the boot record on FAT32 drives has been expanded to include a backup of critical data structures. This means that FAT32 volumes are less susceptible to a single point of failure than FAT16 volumes.
Disadvantages of FAT32
Disadvantages of FAT32 include:

The largest FAT32 volume Windows 2000 can format is limited in size to 32 GB.

FAT32 volumes are not accessible from any other operating systems other than Windows 95 OSR2 and Windows 98.

The boot sector is not backed up.

There is no built-in file system security or compression with FAT32.
Advantages of NTFS
It is recommended that you format all Windows 2000 partitions with NTFS except multiple-boot configurations where non-Windows 2000 and non-Windows NT startups are necessary.
Formatting your Windows 2000 partitions with NTFS instead of FAT allows you to use features that are available only on NTFS. These include:
Recoverability The recoverability designed into NTFS is such that a user should seldom have to run a disk repair program on an NTFS volume. NTFS guarantees the consistency of the volume by using standard transaction logging and recovery techniques. In the event of a system failure, NTFS uses its log file and checkpoint information to automatically restore the consistency of the file system. For more information about recovering your system, restoring data, and creating an emergency repair disk (ERD), see “Repair, Recovery, and Restore” in this book.
Compression Windows 2000 supports compression on an individual file basis for NTFS volumes. Files that are compressed on an NTFS volume can be read and written by any Windows-based application without first being decompressed by another program. Decompression happens automatically during the read of the file. The file is compressed again when it is closed or saved.
In addition, formatting your volumes with NTFS instead of FAT16 or FAT32 provides the following advantages:

There are some Windows 2000 operating system features that require NTFS.

Faster access speed. NTFS minimizes the number of disk accesses required to find a file.

File and folder security. On NTFS volumes, you can set file permissions on files and folders that specify which groups and users have access to them, and what level of access is permitted. NTFS file and folder permissions apply both to users working at the computer where the file is stored and to users accessing the file over the network when the file is in a shared folder. With NTFS you can also set share permissions that operate on shared folders in combination with file and folder permissions.

Windows 2000 can format volumes up to 2 terabytes in size with NTFS.

The boot sector is backed up to a sector at the end of the volume.

NTFS supports a native encryption system called Encrypting File System (EFS), using public-key security to prevent unauthorized access to file contents.

NTFS functionality can be extended by using reparse points, enabling new features such as volume mount points.

Disk quotas can be set, limiting the amount of space users can consume on an NTFS volume.
Disadvantages of NTFS
While NTFS is the recommended file system for users of Windows 2000, it is not appropriate in all circumstances. Disadvantages of NTFS include:

NTFS volumes are not accessible in MS-DOS, Windows 95, and Windows 98. Due to upgrades made to NTFS in Windows 2000, the advanced features of the Windows 2000 implementation of NTFS are not available in Windows NT 4.0 and earlier.

When very small volumes contain mostly small files, the overhead of managing NTFS may cause a slight performance drop in comparison to FAT.
Formatting the System Partition in Multiple-Boot Configurations
If you want to start another operating system, such as Windows 95, Windows 98, Windows for Workgroups, or MS-DOS, use FAT for your system partition and the boot partitions for the other operating systems. You can use NTFS for your Windows 2000 boot partition and other volumes on the computer, as long as those volumes will not be accessed by an operating system other than Windows 2000.
Which Is Faster - FAT16, FAT32, or NTFS?
For small volumes, FAT16 or FAT32 usually provide faster access to files than NTFS because:

The FAT structure is simpler.

The FAT folder size is smaller for an equal number of files.

FAT has no controls regulating whether a user can access a file or a folder; therefore, the system does not have to check permissions for an individual file or whether a specific user has access to the file or folder. This advantage is minimal because Windows 2000 still has to determine if the file is read-only, or whether the file is on a FAT or NTFS volume.
NTFS minimizes the number of disk accesses and time needed to find a file. In addition, if a folder is small enough to fit in the MFT record, NTFS reads the entire folder when it reads its MFT record.
A FAT folder entry contains an index of the file allocation table, which identifies the cluster number for the first cluster of the folder. To view a file, FAT has to search the folder structure.
In comparing the speed of operations performed on large folders containing both long and short file names, the speed of a FAT operation depends on the operation itself and the size of the folder. If FAT searches for a file that does not exist, it has to search the entire folder— an operation that takes longer on a FAT structure than on the B-tree structure used by NTFS. In mathematical terms, the average time to find a file on a FAT folder is a function of N/2, where N is the number of files. On an NTFS folder, the average time is a function of Log N.
Several factors affect the speed with which Windows 2000 reads or writes a file:

Fragmentation of the file. If a file is badly fragmented, NTFS usually requires fewer disk accesses than FAT to find all of the fragments.

Cluster size. For both file systems, the default cluster size depends on the volume size, and is always a power of 2. FAT16 addresses are 16 bits, FAT32 addresses are 32 bits, and NTFS addresses are 64 bits.

The default FAT cluster size is based upon the fact that the file allocation table can have at most 65,535 entries, so the cluster size is a function of the volume size divided by 65,535. Therefore, the default cluster size for a FAT volume is almost always larger than the default cluster size for an NTFS volume of the same size. The larger cluster size for a FAT volume means that there might be less fragmentation in files on a FAT volume.

Location of small files. With NTFS, small files are entirely contained within the MFT record. The file size that fits in the MFT record depends upon the the number of attributes for the file.
Maximum Volume Sizes
The maximum size of a volume depends on the file system used to format the volume. Windows 2000 allows you to format volumes with three different file systems: NTFS, FAT16, and FAT32.
Windows 2000 has the capability to combine noncontiguous disk areas when creating volume sets and stripe sets, but these volumes have the same maximum size limitations of a single volume.
Maximum Sizes on FAT16 Volumes
FAT16 can support a maximum of 65,535 clusters per volume. Table 3.10 lists FAT16 size limits.
Important For Windows NT and Windows 2000, the cluster size of FAT16 volumes between 2 GB and 4 GB is 64 KB. This cluster size is known to create compatibility issues with some applications. For this reason, it is recommended that FAT32 be used on volumes that are between 2 GB and 4 GB. One of the known compatibility issues involves setup programs that do not compute volume free space properly on a volume with 64 KB clusters and will not run because of a perceived lack of free space. The Format program in Windows 2000 displays a warning and asks for a confirmation before formatting a volume with 64 KB clusters.
Table 3.10 FAT16 Size Limits
Description
Limit
Maximum file size
232 - 1 bytes
Maximum volume size
4 GB
Files per volume
216
Maximum Sizes on FAT32 Volumes
The FAT32 volume must have at least 65,527 clusters. The maximum number of clusters on a FAT32 volume is 4,177,918. Windows 2000 creates volumes up to 32 GB, but you can use larger volumes created by other operating systems such as Windows 98. Table 3.11 lists FAT32 size limits.
Table 3.11 FAT32 Size Limits
Description
Limit
Maximum file size
232 - 1 bytes
Maximum volume size
32 GB (This is due to the Windows 2000 format utility. The maximum volume size that Windows 98 can create is 127.53 GB).
Files per volume
Approximately 4 million
Important Windows 2000 can format new FAT32 volumes up to 32 GB in size but can mount larger volumes (for example, up to 127.53 GB and 4,177,918 clusters from a volume formatted with the limits of Windows 98). It is possible to mount volumes that exceed these limits, but doing so has not been tested and is not recommended.
Maximum Sizes on NTFS Volumes
In theory, the maximum NTFS volume size is 232 clusters. However, even if there were hardware available to supply a logical volume of that capacity, there are other limitations to the maximum size of a volume.
One of these limitations is partition tables. By industry standards, partition tables are limited to 232 sectors. Sector size, another limitation, is a function of hardware and industry standards, and is typically 512 bytes. While sector sizes might increase in the future, the current size puts a limit on a single volume of 2 terabytes (232 * 512 bytes, or 241 bytes).
For now, 2 terabytes should be considered the practical limit for both physical and logical volumes using NTFS.
The maximum number of files on an NTFS volume is 232 - 1. Table 3.12 lists NTFS size limits.
Table 3.12 NTFS Size Limits
Description
Limit
Maximum file size
264 bytes - 1 KB (On disk format)244 bytes - 64 KB (Implementation)
Maximum volume size
264 allocation units (On disk format)232 allocation units (Implementation)
Files per volume
232 - 1
Controlling Access to Files and Folders
On NTFS volumes, you can set file permissions on files and folders that specify which groups and users have access to them, and what level of access is permitted. NTFS file and folder permissions apply both to users working at the computer where the file is stored and to users accessing the file over the network when the file is in a shared folder. With NTFS you can also set share permissions, which operate on shared folders in combination with file and folder permissions. File attributes (read-only, hidden, system) also limit file access. Figure 3.5 shows the permissions listed on the Security tab of the Properties dialog box.
FAT16 and FAT32 allow you to set file attributes on files but they do not provide file permissions.
The version of NTFS included with Windows 2000 offers an important new feature for managing security — inheritable permissions. The Security dialog box offers the option to Allow inheritable permissions from parent to propagate to this file object which is enabled by default.
This feature significantly reduces the time and I/O work required to change the permissions of many files and subfolders. For example, suppose a user wants to change the permissions on a tree consisting of several thousand files. With Windows NT 4.0, each file and folder needs to be individually changed. However, with Windows 2000, if the subfolders and files inherit permissions, they only need to be set for the top-level folder.
[image: image5.png]Mydoc.doc Properties

General Secay | Custom | Surmany|

Nare A

P Ty ———

€ UserOne (DOMAIN\wserl) Rencye)
P

Bemissions: Alow Deny
Full Control s} o
Modity s} o
Fead & Execute s} o
Read s} o
Wite a o

7 Alon ol pmissions fompate 0 propagate o i

ok | Cowa

Figure 3.5 Permissions Dialog Box
Figure 3.6 shows the Permissions listed when you select the Advanced button on the Security tab of the Properties dialog box.
[image: image6.png][Permission Entry for Mydoc.doc

bt |

This permission s inherited from the parent obiect.

Name: DserOneDOMANwsert)
Apply orte: |

Pemissions:
Fiead Atiibutes
Fiead Extended Altibules
Create Fes / Wite Data
Create Folders / Append Data
Wile Atributes
Wile Extended Altibutes
Delete Subfolders and Files
Delete

[

Riead Permissions
Changs Permissions
Take Qurership

ONONOOEEEEE|F
ooooooooooo|(§
K —

i

=

Figure 3.6 Advanced Permissions Dialog Box
Important To preserve permissions when you copy or move files between NTFS folders, use the Robocopy program on the Microsoft® Windows® 2000 Resource Kit companion CD.
You can back up and restore data on FAT and NTFS volumes. However, if you back up data from an NTFS volume and then restore it to a FAT volume, you lose security settings and other file information on the restored copies.
You can restore Remote Storage data only to an NTFS volume. For more information about Remote Storage, see “Data and Storage Management” in this book.
Although NTFS provides access controls to individual files and folders, users can perform certain actions on files or folders even if permissions are set on a file or folder to prevent access to users.
For example, you have a folder (Dir1) containing a file (File1), and you grant Full Control to a user for the folder Dir1. If you specify that the user has No Access to File1, the user can still delete File1. This is because the user’s Full Control rights in the folder allow the user to delete the contents (files or subfolders) of the folder.
To prevent files from being deleted, you must set permissions on the file itself, and you must set permissions for the folder containing the file.
Anyone who has List, Read, or greater permissions in a folder can view file properties on any file in the folder, even if file permissions prevent them from seeing the contents of the file.
Note In the Properties dialog box, you can use the Security tab to deny Full Control while leaving Modify, Read & Execute, Read, and Write in place.
With FAT volumes, you cannot set any permissions on the individual files and folders. The only security available is the share permissions that are set on the entire share, that affect all files and folders on that share, and that only function over the network. Once a folder is shared, you can protect the shared folder by specifying one set of share permissions for all files and subfolders of the shared folder. Share permissions are set in much the same way file and folder permissions are set in NTFS. But because share permissions apply globally to all files and folders in the share, they are significantly less versatile than the file and folder permissions used for NTFS volumes.
Share permissions apply equally to NTFS and FAT volumes. They are enforced by Windows 2000, not the individual file system. However, when you move or copy a file from an NTFS to a FAT volume, permissions and other attributes unique to NTFS are lost.
POSIX Compliance
If you want POSIX compliance, you must use NTFS. POSIX compliance permits UNIX programs to be ported to Windows 2000. Windows 2000 is fully compliant with the Institute of Electrical and Electronic Engineers (IEEE) standard 1003.1, which is a standard for file naming and identification.
The following POSIX-compliant features are included in NTFS:

Case-sensitive naming. For example, POSIX would interpret README.TXT, Readme.txt, and readme.txt as different files.

Hard links. A file can be given more than one name. This allows two different file names, which can be located in different folders, to point to the same data.

Additional time stamps. These show when the file was last accessed or modified.
Caution You must use POSIX-based programs to manage file names that differ only in case. POSIX-based programs allow you to create and manage case-sensitive file names.
You cannot use standard commands to manage file names that differ only in case. (Standard commands include those used at the command prompt, such as copy, del, and move, and their equivalents in My Computer.) For example, if you type del AnnM.Doc at the command prompt, both annm.doc and AnnM.Doc would be deleted.
File and Folder Compression
Windows 2000 supports compression on individual files and on folders for NTFS volumes. Files compressed on an NTFS volume can be read and written by any Windows-based application without first being decompressed by another program. Decompression occurs automatically when the file is read. The file is compressed again when it is closed or saved. Compressed files and folders have an attribute of C when viewed in My Computer.
Only NTFS can read the compressed form of the data. When an application such as Microsoft Word or an operating system command such as Copy requests access to the file, NTFS decompresses the file before making it available. For example, if you copy a compressed file from another Windows 2000–based computer to a compressed folder on your hard disk, the file is decompressed, copied, and recompressed.
This compression algorithm is similar to that used by MS-DOS 6.0 DoubleSpace® and MS-DOS 6.22 DriveSpace®, with one important difference — the MS-DOS functionality compresses the entire primary partition or logical drive, while NTFS enables the user to compress individual files and folders within the NTFS volume.
The compression algorithms in NTFS are designed to support cluster sizes of up to 4 KB. When the cluster size is greater than 4 KB on an NTFS volume, none of the NTFS compression functions are available.
Compressing and Decompressing Folders and Files
Files and folders on an NTFS volume are either compressed or decompressed. The compression state of a folder does not reflect the compression state of the files in that folder. For instance, a folder may be compressed, yet all or some of the files in that folder could be decompressed if they were moved from a compressed folder of if you selectively decompressed some of the files in the folder.
You can set the compression state of folders and compress or decompress files by using My Computer or a command-line program called Compact. When using My Computer, you can set the compression state of an NTFS folder without changing the compression state of existing files in that folder. If you have Read or Write permission, you can change the compression state locally or across a network. You have the option of selecting individual folders or files to compress or decompress.
To set the compression state of a folder
 1.
Start Windows Explorer. In the left pane, select the folder you want to compress or decompress.
 2.
On the File menu, click Properties to display the Properties dialog box.
 3.
On the General tab, click Advanced.
 4.
In the Advanced Attributes dialog box, select or clear the Compress contents to save disk space check box, and then click OK.
 5.
In the Properties dialog box, click OK.
Windows 2000 then displays the Confirm Attribute Changes dialog box. This dialog box gives you the option of either compressing the folder only, or compressing the folder and its subfolders and files. To keep existing files or subfolders in the NTFS folders in their current compression state, click Apply changes to this folder only, and then click OK.
To compress or decompress individual files
 1.
Start Windows Explorer. In the left pane, select the file you want to compress or decompress.
 2.
On the File menu, click Properties to display the Properties dialog box.
 3.
On the General tab, click Advanced.
 4.
In the Advanced Attributes dialog box, select or clear the Compress contents to save disk space check box, and then click OK.
 5.
In the Properties dialog box, click OK.
Note Windows 2000 allows closed page files to be compressed. However, when you restart Windows 2000, the page files automatically revert to an uncompressed state. For information about page files, see the topics about virtual memory in Windows 2000 Server Help.
You can set My Computer to display alternate colors for compressed files and folders with the following procedure:
To display alternate colors for compressed files and folders
 1.
In My Computer, select the Tools menu.
 2.
On the Tools menu, click Folder Options.
 3.
On the View tab, select or clear the Display compressed files and folders with alternate color check box.
 4.
Click OK to return to My Computer.
Using the Compact Program
The Compact program is the command-line version of the compression functionality in My Computer. The compact command displays and alters the compression of folders and files on NTFS volumes. It also displays the compression state of folders.
There are two reasons why you might want to use Compact instead of My Computer:

You can use Compact in a batch script.

If the system fails during compression or decompression, the file or folder is marked as Compressed or Uncompressed. If the operation did not complete, Compact forces the operation to complete in the background.
Note Unlike My Computer, Compact does not prompt you to compress or uncompress files and subfolders when you set the compression state of a folder; it automatically compresses or decompresses any files that are not already in the compression state that you set for the folder.
For more information about the Compact program, at the command prompt, type:
compact /?
or see “File System Tools” later in this chapter.
Effects of Compression on Moving and Copying Files
Moving and copying files and folders in disk volumes can change their compression state. The compression state of these files and folders, and the file system in which they were created, can impact the way they are affected while being moved or copied. The compression state of an NTFS file or folder is controlled by its compression attribute.
Moving Files or Folders on NTFS Volumes
When you move an uncompressed file or folder to another folder, the file remains uncompressed after the move, regardless of the compression state of the folder it was moved to. For example, if you move an uncompressed file to a compressed folder, the file remains uncompressed after the move, as illustrated in Figure 3.7.
[image: image7.png]Folder: From Folder: To
State: Compressed State: Compressed

Fie: Framyestiis
[

Wg—>%—me Toftestthis
T moved fils keeps 5 State: Uneompressed

compression state
regardless of the

compression state of the
folder it is moved to.

Figure 3.7 Moving an Uncompressed File to a Compressed Folder
When you move a compressed file or folder to another folder, the file remains compressed after the move, regardless of the compression state of the folder it was moved to, as illustrated in Figure 3.8.
[image: image8.png]Folder: From Folder: To
State: Uncompressed State: Uncompressed

Fie: Fromytestiis
[e

Wg—>%—me Toftestthis
T moved fils keeps 5 State: Compressed

compression state
regardless of the

compression state of the
folder it is moved to.

Figure 3.8 Moving a Compressed File to an Uncompressed Folder
Copying Files or Folders on NTFS Volumes
When you copy a file to a folder, the file takes on the compression attribute of the target folder. For example, if you copy a compressed file to an uncompressed folder, the file is automatically uncompressed when it is copied to the folder, as illustrated in Figure 3.9.
[image: image9.png]Folder: From Folder: To
State: Compressed State: Uncompressed

State: Compressed

L S i e
T oopied e ks o7 T Sheter Uneompresses

compression state of the
Folder it is copied to.

[F\\e Fromytestthis

Figure 3.9 Copying a Compressed File to an Uncompressed Folder
When you copy a file to a folder that already contains a file of the same name, the file that is copied takes on the compression attribute of the target file, regardless of the compression state of the folder, as illustrated in Figure 3.10.
[image: image10.png]Folder: From Folder: To
State: Compressed State: Compressed

Fie: Fromytestiis
[S ez

ot s
e s W e neameresod

slready contains a file of the
same name takes an the
compression state of the
ile it replaces.

Figure 3.10 Copying a File to a Folder That Already Contains a File of the Same Name
Moving and Copying Files Between FAT16, FAT32, and NTFS Volumes
Like files copied between NTFS folders, files moved or copied from a FAT folder to an NTFS folder always assume the compression attribute of the target folder. Because Windows 2000 supports compression only on NTFS volumes, any compressed NTFS files moved or copied to a FAT volume are automatically decompressed. Similarly, compressed NTFS files copied or moved to a floppy disk are automatically decompressed.
Adding Files to an Almost Full NTFS Volume
When adding files to an NTFS volume that is almost full, you can get error messages that indicate there is not enough disk space to write the entire file if the file cannot be compressed, regardless of the degree of compression in the file when it is opened. For this reason, it is possible to get a read error when you are trying to open a compressed file.
If you copy files to a compressed NTFS folder that does not have enough room for all of the files in their uncompressed state, you will receive a message indicating that there is not enough space on the disk even though the files will all fit when compressed. Because NTFS allocates space based upon the uncompressed size of the file, you can get this error when the uncompressed size of the file exceeds the size of the volume. NTFS does not wait for the compression and writing of one file to complete before it begins work on subsequent files, and the system does not get the unused space back from compression until after the buffer is compressed.
When you are running a program and saving files to a compressed folder on a volume that is almost full, the success of the save depends on factors such as how much the file compresses and whether the beginning of the file compresses well.
If you cannot delete any files or do not have any files that you can compress, you can usually copy all of the files if you first copy the largest or the ones that compress best. You can also try copying them in smaller groups rather than all at once.
NTFS Compression Algorithm
NTFS compression uses a 3-byte minimum search rather than the 2-byte minimum used by DoubleSpace. This search enables much faster compressing and decompressing (roughly two times faster), while sacrificing only two percent compression for the average text file.
Each NTFS data stream contains information that indicates if any part of the stream is compressed. Individual compressed buffers are identified by “holes” following them in the information stored for that stream. If there is a hole, NTFS automatically decompresses the preceding buffer to fill the hole.
NTFS provides real-time access to a compressed file, decompressing the file when it is opened and compressing it when it is closed. When writing a compressed file, the system reserves disk space for the uncompressed size. The system gets back unused space as each individual compression buffer gets compressed.
Note Some programs do not allocate space before beginning a save, and only display an error message when they run out of disk space.
Compression Performance
NTFS compression might cause performance degradation because a compressed NTFS file is decompressed, copied, and then recompressed as a new file, even when copied inside the same computer. Similarly, on network transfers, the file is decompressed, which affects bandwidth as well as speed.
The current implementation of NTFS compression runs more efficiently on Windows 2000 Professional than on Windows 2000 Server. Compression on a computer running Windows 2000 Professional does not seem to produce a substantial performance degradation. Heavily loaded servers with considerable write traffic are poor candidates for data compression, while read-only, read-mostly servers, or lightly loaded servers might not see significant performance degradation.
The two ways to measure the performance of NTFS data compression are size and speed. You can tell how well compression works by comparing the uncompressed and compressed file and folder sizes. For more information about using the DirUse program to see the compressed size of folders see “File System Tools” later in this chapter.
Other Compression Methods
Compression utilities other than NTFS compression are available to compress files on computers running Windows 2000. These utilities differ from NTFS compression in the following ways:

They usually run only from the command line.

Files cannot be opened when they are in a compressed state — the file must first be decompressed by using the companion program to the one used to compress the file. When you close the file, it is saved in an uncompressed state, and you must use a program to compress it.
The Windows 2000 Resource Kit includes a compress utility, which can only be run from the command line, and two expand utilities: one runs from the command line; the other is a Windows 2000–based program. For more information about these programs, see “File System Tools” later in this chapter.
As mentioned earlier, the DoubleSpace and DriveSpace compression features in MS-DOS cannot be used when running Windows 2000.
NTFS Recoverability
NTFS is a recoverable file system that guarantees the consistency of the volume by using standard transaction logging and recovery techniques. In the event of a disk failure, NTFS restores consistency by running a recovery procedure that accesses information stored in a log file. The NTFS recovery procedure is exact, guaranteeing that the volume is restored to a consistent state. Transaction logging requires a very small amount of overhead.
NTFS ensures the integrity of all NTFS volumes by automatically performing disk recovery operations the first time a program accesses an NTFS volume after the computer is restarted following a failure.
NTFS also uses a technique called cluster remapping to minimize the effects of a bad sector on an NTFS volume. For more information, see “Cluster Remapping” later in this chapter.
Important If either the master boot record (MBR) or boot sector is corrupted, you might not be able to access data on the volume. Recovery from errors with the MBR or the boot sector is discussed in “Repair, Recovery, and Restore” in this book.
Recovering Data with NTFS
NTFS views each I/O operation that modifies a system file on the NTFS volume as a transaction, and manages each one as an integral unit. Once started, the transaction is either completed or, in the event of a disk failure, rolled back (such as when the NTFS volume is returned to the state it was in before the transaction was initiated).
To ensure that a transaction can be completed or rolled back, NTFS records the suboperations of a transaction in a log file before they are written to the disk. When a complete transaction is recorded in the log file, NTFS performs the suboperations of the transaction on the volume cache. After NTFS updates the cache, it commits the transaction by recording in the log file that the entire transaction is complete.
Once a transaction is committed, NTFS ensures that the entire transaction appears on the volume, even if the disk fails. During recovery operations, NTFS redoes each committed transaction found in the log file. Then NTFS locates the transactions in the log file that were not committed at the time of the system failure and undoes each transaction suboperation recorded in the log file. Incomplete modifications to the volume are prohibited.
NTFS uses the Log File service to log all redo and undo information for a transaction. NTFS uses the redo information to repeat the transaction. The undo information enables NTFS to undo transactions that are not complete or that have an error.
Important NTFS uses transaction logging and recovery to guarantee that the volume structure is not corrupted. For this reason, all system files remain accessible after a system failure. However, user data can be lost because of a system failure or a bad sector.
Caching and Data Recovery
The cache is the area of RAM that contains data. When you write data to disk, the lazy-write technique in Windows 2000 indicates that the data is written when, in fact, it is still in the cache. There can also be cache memory on the disk controller or on the disk itself. The following information will help you decide whether you want to enable the disk or controller cache:

Turning on write caching improves disk performance, particularly if the disk is being heavily written to.

Control of the write-back cache is a firmware function provided by the disk manufacturer. See the documentation supplied with the disk or disk controller. You cannot configure the write-back cache from Windows 2000.

Write caching does not impact the reliability of the file system’s own metadata. NTFS instructs the disk device driver to ensure that metadata writes get written regardless of whether write caching is enabled. Non-metadata is written to the disk normally, so such data can be cached.

Read caching in the disk has no impact on file system reliability.
Cluster Remapping
In the event of a bad-sector error, NTFS implements a recovery technique called cluster remapping. When Windows 2000 detects a bad-sector, NTFS dynamically remaps the cluster containing the bad sector and allocates a new cluster for the data. If the error occurred during a read, NTFS returns a read error to the calling program, and the data is lost. If the error occurs during a write, NTFS writes the data to the new cluster, and no data is lost.
NTFS puts the address of the cluster containing the bad sector in its bad cluster file so the bad sector is not reused.
Important Cluster remapping is not a backup alternative. Once errors are detected, the disk should be monitored closely and replaced if the defect list grows. This type of error is displayed in the Event Log.
Features Built on Reparse Points
A reparse point is a file or a directory that has user-controlled data stored in the system-administered reparse attribute. The reparse attribute is used by file system filters to enhance the normal behavior of files or directories present in the underlying file system. Thus, a file or a directory that contains a reparse point acquires additional behavior not present in the underlying file system.
For more information about sparse files, see the Platform Software Development Kit (SDK) link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
Remote Storage
Remote Storage uses reparse points to mark files that have some of their state stored remotely. The user accesses a file that is in Remote Storage through a placeholder stored on the local computer. The corresponding file system filter uses the information stored in the reparse point to access the data from the storage location. The reparse point contains the allocation information necessary to identify and retrieve the state of the file that is stored remotely and is needed by NTFS to retrieve the file. For more information about Remote Storage, see “Data Storage and Management” in this book.
Volume Mount Points
Volume mount points are new system objects in the internal namespace of Windows 2000 that represent storage volumes in a persistent, robust manner. This feature allows multiple disk volumes to be linked into a single tree, similar to the way Dfs links remote network shares. You can have many disk volumes linked together, with only a single drive letter pointing to the root volume. The combination of an NTFS junction and a Windows 2000 volume mount point can be used to graft multiple volumes into the namespace of a host NTFS volume. Windows 2000 offers this new mounting feature as an alternative to drive letters so system administrators can transcend the 26-drive letter limit that exists in Windows NT. Volume mount points are robust against system changes that occur when devices are added or removed from a computer.
Important A volume is a self-contained unit of storage administered by a file system. The file system that administers the storage in a volume defines a namespace for the volume. A volume mount point is a directory name in an NTFS file system that denotes the root of an arbitrary volume. A volume mount point can be placed in any empty directory of the namespace of the containing NTFS volume. Because volumes can be denoted by arbitrary directory names, they are not required to have a traditional drive letter.
Placing a volume mount point on an NTFS directory causes the storage subsystem to resolve the directory to a specified local volume. This “mounting” is done transparently and does not require a drive letter to represent the volume. A Windows 2000 mount point always resolves to the root directory of the desired volume. Volume mount points require that the version of NTFS included with Windows 2000 be used because they are based on NTFS reparse points.
File System Tools
The utilities described in this section are available on either the Windows 2000 Setup CD or the Windows 2000 Resource Kit companion CD. Table 3.13 shows where to find the utilities.
Table 3.13 Location of File System Utilities
Tool
Location
Cacls
Windows 2000 Setup CD
Compact
Windows 2000 Setup CD
Compress
Windows 2000 Resource Kit companion CD
Convert
Windows 2000 Setup CD
DirUse
Windows 2000 Resource Kit companion CD
Expand
Windows 2000 Setup CD
Mountvol
Windows 2000 Setup CD
Cacls: Displays and Modifies NTFS Access Control Lists
You can use Cacls to display or modify access control lists (ACLs) of files or folders. Table 3.14 follows the command format and describes the command options. The format of the command is:
CACLS filename | folder [/t] [/e] [/c] [/g user:perm] [/r user [...]]
[/p user:perm [...]] [/d user [...]]
Table 3.14 Cacls Options
Option
Description
file name or folder name
Displays ACLs.
/t
Changes ACLs of specified files in the current folder and all subfolders.
/e
Edits an ACL instead of replacing it.
/c
Continues on access-denied errors.
/g user:perm
Grants a specified user access rights, where perm can be:
R (Read)
C (Change (write))
F (Full Control)
/r user
Revokes a specified user’s access rights (only valid with /e).
/p user:perm
Replaces a specified user’s access rights, where perm can be:
N (None)
R (Read)
C (Change (write))
F (Full Control)
/d user
Denies access to a specified user.
Wildcard characters can be used to specify more than one file in a command. You can also specify more than one user in a command.
If you already have permissions set for multiple users on a folder or file and do not use the /e option, all user permissions are removed except for the user and permissions specified on the command line. Use the following syntax when modifying user permissions to include read, change, and full control:
cacls filename | folder /e /r username
cacls filename | folder /e /g username:permission
cacls filename | folder /e /p username:permission
The Cacls tool does not provide a /y option that answers automatically with Y to the ARE YOU SURE? Y/N prompt. However, you can use the echo command to pipe the character Y as input to the prompt when you are running Cacls in a batch file. Use the following syntax to automatically answer Y:
echo y| cacls filename | folder /g username:permission
Important Do not enter a space between the Y and the pipe symbol (|). If you do, Cacls will not make the permission change.
Compact: Compresses and Decompresses NTFS Files and Folders
Compact is the command-line version of the compression functionality in My Computer. Compact displays and alters the compression of folders and files on NTFS volumes. It also displays the compression state of folders. For more information about this program, at the command prompt type:
compact /?
Table 3.15 describes the options available with Compact. The syntax of the command is:
compact [/c] [/u] [/s[:folder]] [/a] [/i] [/f] [/q] [filename [...]]
Table 3.15 Compact Options
Option
Description
none
Displays the compression state of the current folder.
/c
Compresses the specified folder or file.
/u
Decompresses the specified folder or file.
/s[:folder]
Specifies that the requested action (compress or decompress) be applied to all subfolders of the specified folder, or to the current folder if none is specified.
/i
Ignores errors.
/f
Forces a specified folder or file to compress or decompress.
/a
Displays files with the hidden or system attribute.
/q
Reports only the most essential information.
filename
Specifies a pattern, file, or folder. You can use multiple file names and wildcard characters.
The following are reasons to use this utility rather than My Computer:

You can use Compact in a batch script. Using the /i option enables you to skip files that cannot be opened when you are running in batch mode, such as files already in use by another program.

If the system failed during compression or decompression, the file or folder is marked as Compressed or Uncompressed, even if the operation did not complete. You can force the operation to complete by using Compact with the /f option (with either the /c or /u option).
Note Compact automatically compresses or decompresses all of the files and subfolders when you change the compression state of a folder. It does not ask whether you want to change the compression state of the files or subfolders in it.
Volume Compression Requirements
When you attempt to compress a volume that is very low on free space, you might receive an error indicating that there was insufficient space to perform the action.
These errors indicate that the system needs additional free space to perform a compression. The system is not designed to manipulate the data in place on the disk. Additional space is needed to buffer the user data and to hold additional file system metadata. The amount of additional free space required depends on the cluster size, file size, and available space.
Compress: Compresses Files or Folders
Compress is a command-line utility that can be used to compress one or more files. You cannot open a file that has been compressed using this utility until you have expanded it with Expand. To use this program, at the command line type:
compress
with the appropriate options. Table 3.16 describes the options available with Compress. The syntax of the command is:
compress [–r] [–d] source [destination]
Table 3.16 Compress Options
Option
Description
–r
Renames compressed files.
–d
Updates compressed files only if out of date.
source
Specifies the source file. The asterisk (*) and question mark (?) wildcard characters can be used.
destination
Specifies the destination file or path. The destination can be a folder. If source specifies multiple files and the –r option is not specified, then destination must be a folder.
Note Do not use Compress to compress files or folders on NTFS volumes. Instead, compress NTFS files and folders with Compact or by setting or clearing the Compressed attribute in My Computer. For information about using My Computer, see “Compact: Compresses and Decompresses NTFS Files and Folders” earlier in this chapter.
Convert: Converts a Volume from FAT to NTFS
You can use Convert to convert a volume from FAT to NTFS. This utility performs the conversion within the existing volume. You do not need to back up and restore the files when you use this program.
You cannot convert the Windows 2000 boot partition while you are running Windows 2000, so Convert allows you to convert the partition the next time you start Windows 2000. When you convert the partition this way, Windows 2000 restarts twice to complete the conversion process. The syntax of the command is:
convert drive: /FS:NTFS [/v]
To use this utility, at the command line type:
convert
with the appropriate options. Table 3.17 describes the options available with Convert.
Table 3.17 Convert Options
Option
Description
drive
Logical drive that you want to convert.
/FS
Specifies that you want to convert to NTFS.
/v
Runs the tool in verbose mode.
Important Volumes that are converted from FAT to NTFS, (rather than initially formatted with NTFS) lack some performance benefits. Fragmentation of the MFT might occur and on boot partitions, NTFS permissions are not applied after the partition is converted.
Free Space Required to Convert FAT to NTFS
The conversion of a disk partition from FAT to NTFS requires a sufficient amount of available free disk space in order to build the NTFS disk structures. For information about the process Convert uses to convert FAT to NTFS and the space required for conversion, see the Knowledge Base link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
Converting NTFS and FAT Volumes
FAT and NTFS use very different on-disk structures to represent the allocation of space for files. These structures are often referred to as metadata or file system overhead. Another kind of overhead associated with FAT and NTFS is related to the fact that both file systems allocate disk space in clusters of a fixed size. The exact size of these allocation units or clusters is determined at format time, and the defaults are dependent on the size of the volume.
Like FAT, NTFS has a certain amount of fixed-size overhead and a certain amount of per-file overhead. To support the advanced features of NTFS, such as recoverability, security, and support for very large volumes, the NTFS metadata overhead is somewhat larger than the FAT metadata overhead. However, because NTFS cluster overhead is smaller than FAT cluster overhead, it is often possible to store as much if not more data on an NTFS volume as on a FAT volume, even without using NTFS file compression.
Convert builds the NTFS metadata using space that is considered free space by FAT. Thus, if the conversion fails to complete, the FAT representation of the user files is still valid.
DirUse: Scans a Directory and Reports On Disk Space Usage
You can run DirUse to determine the actual usage of space for compressed files and folders in NTFS volumes. The syntax of the command is:
diruse [/s | /v] [/q:#] [/m | /k | /b] [/a] [/l] [/d] [/o] [/c] [/,] [/*] [dirs]
The important option for compressed folders and files is /c, which causes the display of compressed file or folder size instead of apparent size. For example, if your D drive is an NTFS volume, type diruse /s /m /c d: at the command prompt to get the disk space actually used (in megabytes) and the number of files in each of the folders. To see compression information for an individual file, open My Computer or Windows Explorer, select the file, and, on the File menu, select Properties.
For more information about DirUse, see the Windows 2000 Resource Kit Tools Help, or at the command prompt type:
diruse /?
Expand: Expands Compressed Files
The MS-DOS-based Expand utility runs from the command line. Type the expand command with the appropriate options as shown in Table 3.18. The syntax of the command is:
expand [–r] source [destination]
Table 3.18 Expand Options
Option
Description
–r
Renames expanded files.
source
Specifies the source file. The asterisk (*) and question mark (?) wildcard characters can be used.
destination
Specifies the destination file or path. The destination can be a folder. If source specifies multiple files and the –r option is not specified, then destination must be a folder.
Mountvol: Displays, Creates, and Deletes Volume Mount Points
Mountvol is a utility that enumerates the volumes in your system. Table 3.19 describes the operations Mountvol can perform on a volume mount point.
Table 3.19 Volume Mount Point Operations
Option
Description
Mountvol or Mountvol /?
Displays the name, globally unique identifier (GUID), and location of the volume.
Mountvol [drive:]path VolumeName
Creates a new volume mount point. Specify either a drive letter root directory or an existing empty NTFS directory as the source of the mount point and a volume name as the target.
Mountvol [drive:]path /D
Deletes an existing volume mount point.
Mountvol [drive:]path /L
Lists a volume name for a given volume mount point.

‘Path’ specifies the existing NTFS directory where the mount point will reside.

‘VolumeName’ specifies the name of the volume that is the mount point target.

‘/D’ removes the volume mount point from the specified directory.

‘/L’ Lists the mounted volume name for the specified directory.
Important A volume can have only one drive letter. Using Mountvol to assign a drive letter fails if the volume already has a drive letter. To avoid this problem, delete the drive letter of the volume before assigning one using Mountvol.
Additional Resources
For more information about transaction logging and NTFS recovery operations, see Inside Windows NT by David Solomon (Microsoft Press 1998, ISBN 1572316772).
