Chapter 9 - Quality of Service
Quality of Service (QoS) facilitates the deployment of media-rich applications, such as video conferencing and Internet Protocol (IP) telephony, without adversely affecting network throughput. Microsoft® Windows® 2000 QoS also improves the performance of mission-critical software such as Enterprise Resource Planning (ERP) applications. Windows 2000 supports the QoS Admission Control Service, a policy mechanism that offers the ability to centrally designate how, when, and by whom network resources are used on a per-subnet basis. QoS is an emerging technology, with standards that are being developed and revised based on customer feedback and industry-wide cooperation.
This chapter focuses on the Windows 2000 deployment of QoS and the QoS Admission Control Service. These technologies are based on standards created by the Internet Engineering Task Force (IETF).
In This Chapter
What is QoS?
Invoking QoS
Traffic Control
Resource Reservation Protocol
Windows 2000 QoS Support
Windows 2000 QoS Admission Control Service
QoS Admission Control Policies
Defining QoS ACS Policies
Troubleshooting
Related Information in the Resource Kit

For more information about Kerberos, see the Microsoft Windows 2000 Server Resource Kit Distributed Systems Guide.

For more information about Active Directory policy, see the Microsoft Windows 2000 Server Resource Kit Distributed Systems Guide.

For more information about general networking concepts, see “Introduction to TCP/IP” and “Windows 2000 TCP/IP” in this book.
What is QoS?
In a general context, quality of service is a set of methods and processes a service-based organization implements to maintain a specific level of quality. In the context of networking, Quality of Service (QoS) refers to a combination of mechanisms that cooperatively provide a specific quality level to application traffic crossing a network or multiple, disparate networks. Implementing QoS means combining a set of IETF-defined technologies designed to alleviate the problems caused by shared network resources and finite bandwidth.
QoS provides two distinct benefits:

A mechanism for applications to request service quality parameters, such as low network delay.

Higher levels of administrative control over congested subnet bandwidth resources.
Implementing QoS enables administrators to make the most efficient use of subnet bandwidth when deploying resource-intensive applications. A QoS-enabled network provides guarantees for sufficient resources, giving a congested, shared network segment the level of service approaching that of a private network. Different classes of applications have varying degrees of tolerance for delay in network throughput. A QoS guarantee ensures the ability of an application to transmit data in an acceptable way, in an acceptable time frame so that the transmission is not delayed, distorted, or lost.
To uphold such guarantees, QoS requires cooperation from the sending and receiving hosts (end nodes), the link layer (OSI model layer 2) devices (switches), the network layer (OSI model layer 3) devices (routers), and any wide area network (WAN) links in between. Without QoS, each of these network devices treat all data equally and provide service on a first-come, first-served basis. In addition, for an application to make use of QoS it must have some level of QoS awareness, so that it can request bandwidth and other resources from the network.
The efficient use and allocation of bandwidth is critical for productivity. Real-time applications, media-rich applications, and Enterprise Resource Planning applications require a large amount of uninterrupted bandwidth for transmission to be successful, and therefore can strain existing network resources. When traffic is heavy, overall performance degrades and results in traffic delay (such as latency and jitter) and packet loss. This degradation causes problems with video conferencing, real-time audio, and interactive communication, causing distortion of voices and images. Because media-rich applications use large quantities of bandwidth, traditional mission-critical applications suffer from the lack of available resources. QoS provides a delivery system for network traffic that guarantees limited delays and data loss.
It is important to realize that QoS cannot create bandwidth; it can only efficiently partition bandwidth based on different parameters.
Windows 2000 QoS Components
The Windows 2000 QoS architecture is built upon a tightly-integrated set of industry standard protocols, services and mechanisms that control access to network resources, classify and schedule network traffic, and protocols that signal network devices to apply QoS by handling specific traffic flows with priority. Figure 9.1 illustrates the Windows 2000 QoS architecture.
[image: image1.png]Applications

6Qos APIs

RSVP Service o[oosrsvP

Rsvp.exe Service Provider
S Revpspal

Traffic

Cantral AP

()

il [renzpor Device arer]
T
_ A
Koo
g @na Birsctory

eneris Facke! Qomain,
= = TCR/IP Controller]
Topip.<ys
Msgpe.sys Pe-y
B PM APL
Local Palicy
Qos Packet| NDIS Madule
|| Scheduler | Ndis sys msidipm il
Psched sys

Bandwidth request Qos ACS
admission Control Service

b Wetwork
P adapter
Subnet

Qo Admission
Control Host
(Server)

Figure 9.1 Windows 2000 QoS Components
All of these components work together seamlessly to provide QoS on a network. Appearing as shaded boxes in this Figure are the Windows 2000 QoS components. Not pictured in Figure 9.1 are the elements in the network infrastructure required to fully guarantee QoS end-to-end. The OSI model layer 2 and layer 3 devices in between the end nodes (that is, sender and receiver) must also support QoS. Otherwise, traffic receives standard network treatment (best-effort delivery) on that segment.
Generic QoS (GQoS) API (part of Winsock 2.0) Windows 2000 QoS is designed with a Generic QoS API, an abstract interface to the QoS technologies in Windows 2000. Application programmers can use GQoS to specify or request bandwidth requirements particular to their application for diverse media such as Ethernet or IP over Asynchronous Transfer Mode (ATM).
RSVP SP (Rsvpsp.dll) When QoS is requested, GQoS calls upon the services of the underlying QoS service provider, Resource Reservation Protocol Service Provider (RSVP SP). The RSVP SP invokes RSVP to signal all network devices along the data path of the bandwidth requirements, traffic control, and QoS Admission Control support.
RSVP Service (Rsvp.exe) Resource Reservation Protocol (RSVP) is an IETF-defined signaling protocol that carries QoS requests for priority bandwidth through the network. RSVP bridges the gap between the application, the operating system, and the media-specific QoS mechanisms. RSVP sends messages in a format that is media-independent, so that end-to-end QoS is possible over networks that combine different types of low-layer network devices.
Traffic Control (Traffic.dll) Traffic control creates and regulates data flows by using defined QoS parameters. It also facilitates the creation of filters to direct selected packets through a data flow. The capabilities of traffic control are accessed via the Traffic Control API. Traffic control is called upon by the GQoS API.
Generic Packet Classifier (Msgpc.sys) The Generic Packet Classifier determines the service class to which an individual packet belongs. Packets are then queued by service level. The queues are managed by the QoS Packet Scheduler.
QoS Packet Scheduler (Psched.sys) The QoS Packet Scheduler enforces QoS parameters for a particular data flow. Traffic is marked with a particular priority by the QoS Packet Scheduler. The QoS Packet Scheduler then determines the delivery schedule of each packet queue and handles competition between queued packets that need simultaneous access to the network. Packets are marked with an 802.1p priority for prioritization in layer 2 devices, and a Differentiated Class of Service for prioritization in layer 3 devices.
QoS Admission Control Service (QoS ACS) QoS ACS manages network resources on congested, shared network segments (subnets). It is not required to implement the QoS ACS on every subnet; the highest benefit is realized from implementing the QoS ACS on congested segments. The QoS ACS provides a control point for bandwidth requests, determining if the necessary network resources are currently available, and whether or not the user has the necessary permissions to request that amount of bandwidth and service.
Local Policy Module (Msidlpm.dll) The Local Policy Module (LPM) is a component of the QoS ACS that provides a policy enforcement point (PEP) and policy decision point (PDP). The LPM included in Windows 2000 provides the QoS ACS with a means of retrieving policy information from the Active Directory™ directory service. The QoS ACS invokes the LPM DLL Msidlpm.dll when a RSVP message with a Windows 2000 Kerberos ticket is detected. The LPM extracts the user name from the RSVP message and looks up the user’s admission control policy in Active Directory. An LPM API is also included.
How QoS Works
This section describes how these components work together in a common QoS scenario. Figure 9.2 illustrates a common QoS deployment.
[image: image2.png]Network 4 Edge
Router AN

Network B

Figure 9.2 How QoS Works
 1.
A client on Network A requests QoS. The application used to transmit data is QoS-enabled. The application requests QoS from the RSVP SP.
 2.
The RSVP SP requests the RSVP service to signal the necessary bandwidth requirements, and notifies traffic control that QoS has been requested for this flow. Traffic is currently sent at a best-effort delivery level.
 3.
An RSVP message is sent to the QoS ACS server, requesting a reservation. Note that it is RSVP messages that are passed to the QoS ACS, not the data packets which are ultimately transmitted from sender to receiver.
 4.
The QoS ACS server verifies that enough network resources are available to meet the QoS level requested, and that the user has the policy rights to request that amount of bandwidth. The Local Policy Module uses the Kerberos ticket in the RSVP request to authenticate the user identity and look up the user policy in Active Directory. Note that the QoS ACS can verify resources for the sender, receiver, or both.
 5.
After verification is complete, the QoS ACS server approves the request and logically allocates bandwidth. The QoS ACS server forwards the request toward the receiver (client) on Network B.
 6.
When the RSVP request passes the edge router on Network A, the router keeps track of the resources (bandwidth) that are requested. The bandwidth is not yet physically allocated (RSVP is a receiver-initiated protocol and bandwidth can only be reserved by the receiver). The same process is repeated on the edge router for Network B.
 7.
The request is passed through each network device in the data path before it arrives at the receiver. The receiving client indicates it wants to receive the data and returns an RSVP message requesting a reservation.
 8.
When the receiver’s request for bandwidth passes through the edge router on Network B, it already has cached the information about the requested bandwidth (from the sender’s request). The router matches the receiver request with the sender’s request, and installs the reservation by physically granting the bandwidth. The same process is repeated on the edge router for Network A.
 9.
The reservation is sent back to the sender. The layer 3 network devices (the edge routers) are capable of approving and allocating the physical bandwidth. The reservation simply passes through the layer 2 switch.
10.
During this process, the traffic is sent by traffic control on the sender as best-effort. Upon receiving the reservation message, the traffic control on the sending host begins the process of classifying, marking, and scheduling the packets to accommodate the QoS level requested. The QoS Packet Scheduler performs the priority marking for RSVP, 802.1p for prioritization on layer 2 devices (illustrated here as the switch), and for Differentiated Class of Service for layer 3 devices (illustrated here as edge routers).
11.
The QoS Packet Scheduler begins sending the prioritized traffic. The data is handled as priority by all devices along the data path, providing greater speed of throughput and a more successful transmission to the client on Network B.
Note that this example is a general description. Variations are possible depending on network topology as well as the presence of different network devices.
Invoking QoS
The Generic QoS API (GQoS) and the QoS service provider simplify the deployment of QoS by providing an application interface and support for applications that request QoS from the network.
Generic QoS API
The Generic QoS API provides a standard interface for developers and a mechanism for adding new QoS components without completely redesigning existing QoS-enabled applications. GQoS is part of the Windows Sockets 2.0 (Winsock2) API. This enables applications to invoke QoS without needing a full knowledge of the QoS mechanisms available or the specific underlying network media.
Application programmers can use the GQoS API to specify or request bandwidth requirements particular to their application, such as preventing latency when streaming audio. They can also use the GQoS API to prioritize traffic generated by mission-critical applications. GQoS is abstract and requires only very simple directives from the application. Extensions to the API provide additional control. Applications requesting QoS should utilize the GQoS API.
The Windows 2000 Software Development Kit provides the necessary conceptual and reference materials for using the GQoS API.
QoS Service Provider (RSVP SP, RSVP Service)
When QoS is requested, GQoS invokes the services of the underlying QoS service provider (RSVP SP). The RSVP SP provides the following services:

RSVP (signaling)

The RSVP SP initiates and terminates all RSVP signaling on behalf of applications by communicating with the RSVP service (Rsvp.exe). It provides status regarding the QoS reservation to applications that are interested, and minimizes the need for applications to understand RSVP signaling.

Policy Support

The RSVP service communicates with the Kerberos Domain Controller to generate policy elements that are included in RSVP signaling messages. These identify the user so that per-user or per-subnet admission control policies can be applied to network resources.

Traffic Control

The RSVP service uses the Traffic Control API to invoke traffic control on behalf of QoS-aware applications in response to GQoS calls or RSVP signaling messages. The RSVP service hides the complexity of the Traffic Control API from applications using the GQoS API, so that applications do not need to be redesigned to make use of traffic control.

QoS Admission Control Support

The RSVP service communicates with an admission control server, like the Windows 2000 QoS ACS server, to prevent over-commitment of bandwidth on shared segments.
Traffic Control
The RSVP service invokes traffic control on behalf of an application when QoS is requested. Traffic control refers to a collection of mechanisms that control and police a specific data flow once a QoS reservation has been established. Traffic control is used to segregate the traffic into the appropriate service classes, and regulate its delivery to the network. Figure 9.3 illustrates the traffic control components.
[image: image3.png]QoS ACS dlient
&

Quality of Service-Enabled Application

]
o] sty s vt [
ey

Data path

Queves

[Qos packet scheduler]

Send at this rate

Network
Adapter

Data path

Figure 9.3 Traffic Control Components
A key element of traffic control is establishing the service parameters for a sequence of packets (known as flowspec) and then treating all member packets as a single flow. Traffic control uses information from the flowspec to create a flow with defined QoS parameters, and then creates filters to direct selected packets into this flow (known as filterspec).
Traffic control works with the QoS Admission Control Service and RSVP to meet the service level and priority required by the bandwidth request. Traffic control is also available in certain cases by using certain tools for subnet clients that are not QoS-aware, and controls data flow through network devices that are not RSVP-compliant by marking packets for 802.1p (layer 2 devices) or Differentiated Class of Service (layer 3 devices).
Traffic Control API (TC API) The TC API is a programmatic interface to the traffic control components that regulate network traffic on a host. The TC API allows the aggregation of traffic from a number of sources (on the same sending host) into a single traffic control flow. For example, all traffic to destination net 1.2.3.0 can be placed on the same flow, regardless of source address port and destination port. By comparison, the Generic QoS API limits the use of a traffic control flow to traffic from a single “conversation” only (a conversation is defined by source and destination address and port).
The TC API also works with GQoS to enable third-party traffic management applications that might request QoS on behalf of applications that are unable to do so on their own, or in situations where a system administrator wants to better control the QoS provided to applications. For more information about using the Traffic Control API, see the Software Development Kit link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
Traffic Control Components
On each host, traffic is marked and transmitted as priority QoS traffic by the process of packet classification and scheduling.
Generic Packet Classifier (Msgpc.sys)
Packet classification provides a means by which packets generated by an application can be classified and subsequently prioritized before being sent across a network. The Generic Packet Classifier is the mechanism by which traffic control determines the flow for any packet, and therefore, the treatment that the packet receives. Once a packet has been classified as belonging to a particular flow, the QoS Packet Scheduler is able to give it treatment in accordance with that flow’s parameters.
QoS Packet Scheduler (Psched.sys)
Packet scheduling is the means by which data (packet) transmission management (a key function of Quality of Service) is achieved. The QoS Packet Scheduler enforces QoS parameters for a particular flow. Traffic shaping (smoothing bursts and peaks in traffic to an even flow) relies on the packet classifier to assign packets into queues based upon their QoS parameters. The QoS Packet Scheduler retrieves the packets from the queues and transmits them according to the QoS parameters, which generally include a scheduled rate and some indication of priority. The scheduled rate is used to pace the transmission of packets to the network. The priority is used to determine the order in which packets need to be submitted to the network when congestion occurs. This smoothes bursts or peaks of traffic over a period of time, thereby effecting a steadier use of the network and maintaining resource integrity.
The QoS Packet Scheduler can be installed on any computer on which you want to have traffic control services. The QoS Packet Scheduler must be installed on all end-systems that make reservations on subnets where you are running an QoS Admission Control Service, such as any host that sends data to other hosts (for example, a multimedia server or inventory control server).
Packet Marking
To ensure quality of service, packets must be marked in such a way that network devices along the data path can properly provide the required QoS, or at least attempt to if they are not RSVP-enabled. The QoS Packet Scheduler provides 802.1p marking while Differentiated Class of Service marking is done by TCP/IP. The QoS Packet Scheduler cannot be installed on Microsoft® Windows® 98–based computers; therefore, 802.1p functionality is not available on them. Diff-serv Code Point (DSCP) marking is available on Windows 98–based computers using the RSVP SP. Windows 2000 defines a default mapping to 802.1p and Differentiated Class of Services in the registry. This is discussed in more detail later in this chapter. Network devices can override this default mapping by inserting a special object into RSVP signaling messages. This is done at the determination of a QoS policy server that might map a user’s traffic to a lower or higher priority than the default mapping. A policy server may insert a traffic class (T class) object to override the 802.1p class and a D class object to override the Diff-serv class.
Traffic Service Levels
Traffic patterns fall into two primary groups:

Elastic traffic

Elastic traffic adapts easily to change. When little bandwidth is available, elastic traffic delivery is slow. Delivery is faster when bandwidth is abundant. The data sender is automatically tuned to the rate of the network. Elastic traffic is usually generated by transaction-oriented applications, such as bulk data transfers.

Real-time traffic

Real-time traffic is generated primarily by real-time applications that require dedicated bandwidth, such as video conferencing. Real-time traffic is limited in its ability to adapt to changing network conditions, and delays can significantly reduce intelligibility and usefulness.
Traffic control supports four service levels to meet the needs of the two primary traffic pattern groups:

Best-effort

Best-effort is the standard service level of many IP-based networks. It is a connectionless model of delivery that is suitable for elastic traffic. Packets are sent with no guarantees for low delay or adequate bandwidth.
The next two levels are suitable for real-time applications, giving them preferential service:

Controlled load

Controlled load approximates the behavior of best-effort service in unloaded (not heavily loaded or congested) conditions. A flow receiving controlled load service at a network device can experience little or no delay or congestion loss. Any unreserved bandwidth or reserved bandwidth not currently in use remains available for other traffic. See the Internet Engineering Task Force (IETF)–defined Request for Comment (RFC) 2211 for detailed information about this service level.

Guaranteed service

Guaranteed service guarantees the maximum limit on delay. This is most useful if every host on the data path provides this level of service, including routers or switches that are compliant with QoS and RSVP. However, the impact of guaranteed traffic on the network is heavy, so it is not desirable for applications that generate elastic or best-effort traffic. Any unreserved or reserved bandwidth not currently in use remains available for other traffic. See the IETF-defined RFC 2212 for more information about this service level.

Qualitative service

Qualitative service is designed for applications that require prioritized traffic handling but cannot quantify their QoS requirements in terms of a concrete flow specification. These applications typically send out traffic that is intermittent or burst-like in nature. In the case of qualitative service, it is the network that determines the treatment of qualitative flows. Mission-critical ERP applications generate this kind of traffic. For more information about this service level, see the IETF link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources. See the IETF-defined Internet Draft titled “Specification of the Qualitative Service Type” for detailed information about this service level.
The QoS Admission Control policy determines which service level a user receives.
Resource Reservation Protocol
Resource Reservation Protocol (RSVP) is an IETF-defined (RFC 2205) signaling protocol that uses Integrated Services (Intserv) to convey QoS requests to the network. The Intserv architecture specifies extensions to the best-effort traffic model – the standard delivery model used in most IP networks and the Internet. Intserv provides for special handling of priority-marked traffic, and a mechanism by which QoS-aware applications can choose service levels for traffic delivery: controlled load or guaranteed service. Windows 2000 supports an extension of the standard Intserv service types in the form of the qualitative service type. The qualitative service type is designed for applications that require QoS but cannot quantify their QoS requirements due to the intermittent or burst-like nature of their traffic. Integrated Services also defines QoS signaling (RSVP) for the purpose of making resource reservations across a network.
RSVP is a layer 3 protocol, making it independent of the underlying network media. Customer networks generally include heterogeneous media, including Ethernet or token ring local area network (LAN) media, WANs made up of low and high-speed leased lines, modem links, and ATM technology. RSVP bridges the gap between applications, the operating system, and media-specific QoS mechanisms. This enables RSVP to send QoS messages structured in media-independent terms, making it an effective signaling protocol for end-to-end QoS over networks that combine different types of low-layer media. For example, end nodes can exchange RSVP messages across a network comprised of 802-type LANs, routers, ATM and WAN regions, with each making the appropriate admission control decisions and providing QoS if approved.
RSVP is well-suited to both mission-critical applications, such as Enterprise Resource Planning software, and session-oriented applications, such as IP telephony and video conferencing. Both applications exchange QoS data between fixed end nodes for some degree of persistence. These types of applications tend to stream data. QoS-enabled connections are unidirectional. To enable a connection with service guarantees for both sending and receiving from a host, two individual QoS-enabled connections are required.
RSVP is primarily for use with IP traffic, operating on top of IPv4 or IPv6, whereas a transport protocol resides in the protocol stack. However, it is a signaling protocol, not a routing protocol. Routing protocols determine where packets get forwarded; RSVP configures reservations for data flows along a data path predetermined by the network routing protocol.
The RSVP protocol is installed as part of the Windows 2000 installation of Windows Sockets 2.0. The RSVP protocol does the following:

Works with any current-generation network routing protocol and supports a number of network layer protocols, including TCP/IP.

Supports multicast and unicast transmissions.

Carries the bandwidth reservation request to each network device or hop (routers, switches, or proxies) responsible for managing resources in the data path between the sender and receiver (end nodes).

Maintains the reservation at each hop by caching that information in the hop, creating a reservation soft-state or state.

Passes transparently through devices that do not support RSVP.
If a network device does not support RSVP, QoS is not truly guaranteed along that particular network segment. The messages simply pass through each hop, and since they are not recognized, no priority bandwidth or handling is allocated. Throughout that segment, traffic is handled best-effort, meaning that end-to-end and low-delay guarantees for the requested service level are not available. This situation can arise in areas of the network where there is an abundance of bandwidth or where the network elements themselves are the resource constraint. Currently, some high-end routers and switches are RSVP-compliant.
The RSVP Service Provider (RSVP SP), which invokes and facilitates QoS and RSVP signaling, enables application developers to directly interact with RSVP. For additional information about the RSVP Service Provider, see the Software Development Kit link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
Direct interaction with RSVP by an application or service enables fine-tuning or special service requests. However, most application programmers find that enabling an application or service to use the RSVP SP, which initiates and maintains RSVP signaling on behalf of applications or services, is sufficient to enable their application or service to take advantage of QoS capabilities.
The QoS API is the programmatic interface to the RSVP SP. Under most circumstances, the QoS API is the only interface that programmers require to create QoS-aware or QoS-enabled applications.
RSVP Messages
RSVP messages identify what application and user is requesting QoS, the service level requested from the network, the quantity of bandwidth requested, and the end nodes (source and destination addresses). Based on administrator-defined admission control policies and network resource availability, the QoS request is either approved or denied by the host performing admission control duties. If the request is approved, QoS mechanisms are invoked to classify and schedule the traffic flow, logically allocate bandwidth, and notify the requesting host of the approval so that it might begin sending priority traffic. Until this occurs, the transmission is treated as standard traffic by the network.
Information encased in RSVP messages is per data flow (a flow is a data stream between two end nodes). RSVP messages carry the following information:

Traffic classification information. The source and destination IP addresses and ports identify the traffic flow (filterspec).

Traffic parameters. Expressed using Intserv's token-bucket model, these identify the data rate of the flow (flowspec).

Service level information. From the Intserv-defined service types, conveys the flow requirements for the RSVP request.

Policy information: Allows the system to verify that the requester is entitled to the resources and to the amount of resources being requested.
RSVP uses the message types listed in Table 9.1 to establish and maintain reserved bandwidth on a subnet.
Table 9.1 RSVP Message Types
Message Type
Function
PATH
Carries the data flow information from the sender to the receiver. The PATH message marks out the path that requested data must take when returning to the receiver. PATH messages contain bandwidth requirements, traffic characteristics, and addressing information, such as the source and destination IP addresses. PATH messages are issued for a particular session, which is determined by the destination address and port of the data flow. It is necessary to have a unique session identifier, since a sender can offer multiple traffic flows and receive RESV messages from multiple receivers. The unique session identifier enables the ability to associate the correct PATH messages with the correct RESV messages.
RESV
Carries the reservation request from the receiver. RESV messages contain the actual bandwidth reservation, the service level requested, and the source IP address. This is the message that causes the reservation to become active.
PATH-ERR
Indicates an error in response to the PATH message.
RESV-ERR
Indicates an error in response to the RESV message.
PATH-TEAR
Removes the PATH state along the route.
RESV-TEAR
Removes the reservation along the route.
RESV -CONF
Optional. If a receiver requests a confirmation, the sender transmits this message to the receiver.
When an application on an end node requests QoS, RSVP constructs PATH messages that express the QoS requirements of the sending application, in abstract, Layer 3 terms that each network device can interpret. The receiving-end node sends back an RESV message that establishes the reservation along the data path. For the reservation to be truly guaranteed, each hop must grant the reservation and physically allocate the requested bandwidth. By granting the reservation, the hop commits to providing adequate resources. Devices might reject resource requests based on lack of policy rights by the requesting user or lack of network resources at the time of the request.
If the reservation is rejected, the application receives an immediate response that the subnet cannot currently support the amount or type of bandwidth, or the requested service level. It is up to the application to determine whether to resend the data and accept a best-effort service level or wait and repeat the bandwidth request at a later time. Note that the end nodes must periodically refresh the reservation by sending PATH and RESV messages every few seconds (generally this is set to 30 second intervals).
Flowspecs and Filterspecs
RSVP messages carry very specific classification information that enable RSVP-aware devices to separate traffic into flows associated with individual conversations and to ensure that each flow gets the treatment determined under the RSVP request. Fine-grain classification provides a better guarantee of service.
RESV messages contain a flow specification (flowspec) and a filter specification (filterspec) to provide information about the data flow. The combined flowspec and filterspec are referred to as the flow descriptor.
Filterspec
Traffic is classified based on the source and destination IP address and port specified in the packet. This group of parameters is referred to as the filter specification or filterspec. QoS-aware devices base the handling of the packet on a match with the filterspec.
The filterspec, together with a session specification, defines the set of data packets to be included in the flow. The filterspec is used to set parameters in the Packet Classifier. Data packets that are addressed to a particular session but do not match any of the filterspecs for that session are handled as best-effort traffic.
Filter Styles
A reservation includes options, referred to as the reservation style. This style determines how the reservation is treated from the sender’s perspective.
A reservation can either be distinct for each sender or it can be shared by a set of specified senders. It can also be an explicit list of all selected senders, or a wildcard specification that implicitly selects all senders for the session.
Wildcard Filter Style
The Wildcard Filter (WF) reservation style contains a sender selection specified in wildcard format and a shared reservation. A WF style reservation creates one reservation for all sender flows. The amount of resources reserved by shared reservation is determined by the largest of the resource requests that were merged. A WF reservation is automatically offered to new senders. No filter spec is needed.
Fixed-Filter Style
In contrast, the Fixed Filter (FF) style reservation contains an explicit sender selection format and unique reservation parameters (as opposed to merged). The FF style reservation is a distinct reservation for packets from a single sender. Multiple FF reservations can be requested at the same time, using a list of flow descriptors. The filter spec must match exactly one sender.
Shared Explicit Style
The Shared Explicit (SE) style reservation involves a single reservation that is shared among an explicit list of senders. The SE style reservation is specified by one flowspec and a list of filterspecs.
Flowspec
Through RSVP and Intserv semantics, GQoS enables applications to describe the quality of service they require for transmitting a data flow. The QoS parameters are carried in a generic Intserv flowspec.
The flowspec specifies the type of QoS requested, and is used to set parameters in the QoS Packet Scheduler. It is included in reservation requests and includes:

Rspec. Defines the level of QoS requested.

Tspec. Describes the data flow.
The flowspec structure provides the following QoS parameters to RSVP. This allows QoS-aware applications to invoke, modify, or remove QoS settings for a particular flow.
TokenRate Specifies the permitted rate at which data can be transmitted over the network for the duration of the flow. TokenRate is similar to other token-bucket models seen in WAN technologies such as Frame Relay, in which the token is analogous to a credit. If such tokens are not used immediately, they accrue to allow data transmission up to a specified amount (the token bucket size). Flows are also limited to a burst rate (the peak bandwidth specified). This avoids situations where flows that are inactive for some time suddenly flood the available bandwidth with accrued tokens. Traffic control is maintained because flows cannot send too much data at once, and network resource integrity is maintained because such devices are spared from high traffic bursts.
TokenRate is expressed in bytes per second. It is important that applications base their TokenRate requests on reasonable expectations for transmission requirements. For example, in video applications, the TokenRate is typically set to the average bit rate, peak to peak. If the TokenRate member is set to –1, limits on the transmission rate will not be in effect.
TokenBucketSize The maximum amount of credits a particular direction of a flow can accrue, regardless of time. In video applications, TokenBucketSize is likely the largest average frame size. In constant rate applications, TokenBucketSize needs to be set to allow for small variations. TokenBucketSize is expressed in bytes.
PeakBandwidth The upper limit on time-based transmit permissions for a given flow, sometimes called a burst limit. PeakBandwidth restricts flows from overburdening network resources with one-time or cyclical data bursts by enforcing a per-second data transmission ceiling. Some intermediate systems can take advantage of this information, resulting in more efficient resource allocation. PeakBandwidth is expressed in bytes per second.
Latency Maximum acceptable delay between transmission of a bit by the sender and its receipt by one or more intended receivers. The precise interpretation of this number depends on the level of guarantee specified in the QoS request. Latency is expressed in microseconds.
DelayVariation Difference between the maximum and minimum delay a packet can experience. Applications use DelayVariation to determine the amount of buffer space needed at the receiving end of the flow, in order to restore the original data transmission pattern. DelayVariation is expressed in microseconds.
ServiceType Specifies the level of service for the flow:

NoTraffic. Indicates that no traffic is transmitted in the specified direction. On duplex-capable media, this value signals underlying software to set up unidirectional connections only.

BestEffort. Specifies that the network devices must make a reasonable effort to maintain the level of service requested, without making any guarantees on delivery. This is the standard level of network service.

ControlledLoad. Provides end-to-end QoS that closely approximates a level of transmission quality that mirrors unloaded network conditions (light traffic) from the associated network devices along the data path. The packet loss closely approximates the basic packet error rate of the transmission medium. The transmission delay for a very high percentage of the delivered packets will not greatly exceed the minimum transit delay experienced by any successfully delivered packet.

Guaranteed. Initiates a queuing algorithm within the QoS service provider that isolates a particular flow as much as possible from the effects of other flows. This guarantees the ability to transmit data at the TokenRate for the duration of the connection. However, if the corresponding end node transmits data faster than the TokenRate, the network might delay or discard the excess traffic. If TokenRate is not exceeded over time, latency is also guaranteed.

Qualitative. Qualitative service is meant for applications that cannot quantify their QoS requirements. An application that requests qualitative service is in effect asking the network to figure out how to treat its traffic. A request for qualitative service is usually accompanied with an application ID so that a policy server on the network can figure out how to treat the traffic for that application. The policy server can then instruct Windows 2000 to mark traffic for the qualitative flow with a particular Differentiated Services Code Point (DSCP).
How RSVP Works
RSVP is based on signaling messages that traverse the network, allocating resources along the way. RSVP is receiver-initiated, because sender initiation does not scale well to large, multicast scenarios in which there are heterogeneous receivers. In multicast scenarios, the application server sends out only one PATH message to multiple receiving computers, thus conserving network bandwidth. In the case of multicast traffic flows, RESV messages from multiple receivers are merged by taking the maximum values requested.
RSVP is a soft-state protocol, meaning that the reservation must be periodically refreshed or it expires. The reservation information, or state, is cached in each hop tasked with managing resources. If the network’s routing protocol alters the data path, RSVP attempts to reinstall the reservation state along the new route. When refresh messages are not received, reservations time out and are dropped, releasing bandwidth. The sender refreshes PATH messages, and the receiver refreshes RESV messages. Because RSVP sends its messages as best-effort IP datagrams with no reliability enhancement, some messages might be lost, but the periodic transmission of refresh messages by hosts and routers compensates for the occasional loss of an RSVP message. To ensure receipt of refresh messages, the network traffic control mechanism must be statically configured to grant some minimal bandwidth for RSVP messages to protect them from congestion losses. At any time, the sender, receiver, or other network device providing QoS, can terminate the session by sending a PATH-TEAR or RESV-TEAR message.
Policy is checked by the RSVP-aware routers and switches along the path. Devices might reject resource requests based on the results of these policy checks. If the reservation is rejected due to lack of resources, the requested application is immediately informed that the network cannot currently support that amount and type of bandwidth or the requested service level. The application determines whether to wait and repeat the request later or to send the data immediately using best-effort delivery. QoS-aware applications, such as those controlling multicast transmissions, generally begin sending immediately on a best-effort basis, which is then upgraded to QoS when the reservation is accepted.
Figure 9.4 is a basic example of how RSVP messages flow between a sender and receiver, through the admission control host and intermediary hops.
[image: image4.png]Multimedia

Pl
e

QoS ACS Host

path | | Resv

—

Figure 9.4 How RSVP Works
 1.
The multimedia server sends a PATH message requesting priority bandwidth to the QoS ACS host (a Windows 2000 server running the QoS Admission Control Service). The message is ultimately headed to the receiver of the data. In the case of multicast (multiple receivers), the PATH message is sent to the multicast address and received by all hosts that are members of the multicast group. Note that it is RSVP messages that are passed to the QoS ACS, not the data packets ultimately transmitted from sender to receiver.

Until confirmation of a reservation is received with a RESV message, data for the connection is sent at a best-effort service level from the sending host. The best-effort service type instructs the RSVP SP to use the application or service's QoS parameters as guidelines for service quality requests, and makes reasonable effort to maintain the requested level of service. It does not make any guarantees that requested QoS parameters are implemented or enforced.
 2.
If a QoS ACS server is present in the local subnet, the PATH message is routed via the QoS ACS server. In this example, a QoS ACS host approves the request and forwards it to the receiver (client). The PATH message travels through the network to the receiver, along the data path determined by the network routing protocol.
 3.
A PATH state is maintained at each hop. Each PATH state contains a copy of the PATH message and the IP address of the previous hop.
 4.
When a PATH message arrives at the intended receiver, the receiving host (if interested in receiving the data) responds by sending a RESV message that reserves the resources along the same network path traveled by the PATH message.

Here, the receiver creates a RESV message, indicating that it wants to receive the data from the multimedia server.
 5.
The RESV message follows the reverse data path back to the multimedia server, using the addressing information stored in the PATH state at each hop, to determine the route.
 6.
As the RESV message propagates back toward the sender, each hop determines whether or not to accept the proposed reservation and commit resources. If an affirmative decision is made, physical bandwidth is allocated and RESV messages are propagated to the next hop on the path from source to destination. If a hop is unable to commit, it sends a RESV-ERR message to the receiving host.

When the RESV message arrives at the router hop, the reservation is granted and physical bandwidth is allocated. The hop maintains the reservation (RESV) state and notifies the traffic control service that data is to be sent.

The reservation is considered to be installed when the first RESV message arrives at the sender in response to the PATH message for the corresponding session. The reservation remains until the session is terminated by either host or a network device. As long as the reservation is in place, the sender is able to transmit prioritized data.
 7.
The multimedia server and the client periodically send PATH and RESV messages during the data transmission, to keep the reservation state in place.
Every hop might not be RSVP-capable, especially when data crosses the Internet. Both RSVP and non-RSVP routers forward PATH messages towards the destination address using their local unicast or multicast routing table. This means that the routing of PATH messages is unaffected by non-RSVP routers in the path. Although a group of non-RSVP routers cannot perform a resource analysis and grant a reservation, if such a cloud has sufficient bandwidth capacity, it may still provide some level of useful real-time service.
RSVP dynamically adapts to new routes during the flow of a data stream. When a route changes (for example, when a router or switch can no longer commit to the requested resources), the next PATH message initializes the path state on the new route, and future RESV messages establish a reservation state for the new route.
You might need to enable special filtering for the RSVP messages to pass through security gateways, firewalls, or proxy servers without generating a PATH-ERR message. Windows 2000 IP Security (IPSec) does not interfere with the interpretation of RSVP messages.
RSVP Message Structures
Each RSVP message consists of a common header. The fields of the common header are listed in Table 9.2.
Table 9.2 Fields of the Common Header
Field
Size
Description
Vers
4 bits
RSVP version number (this implementation is version 1.)
Flags
4 bits
Reserved. As of this implementation, no flag bits have been defined.
Message Type
8 bits
1 = PATH2 = RESV3 = PATH-ERR4 = RESV-ERR5 = PATH-TEAR6 = RESV-TEAR7 = RESV-CONF
RSVP Checksum
16 bits
A checksum to provide message integrity. An all-zero value means that no checksum was transmitted.
Send TTL
8 bits
Provides the IP Time to Live (TTL) value contained in the message. With normal IP forwarding, RSVP can detect a non-RSVP hop by comparing the IP TTL when the PATH message is sent to the TTL when it is received; for this purpose, the transmission TTL is placed in the common header.
RSVP Length
16 bits
The total length of the RSVP message in bytes, including the common header and the variable length objects that follow.
Every object consists of one or more 32-bit words with a one-word header. Table 9.3 lists the fields in the object header.
Table 9.3 Object Formats
Field
Size
Description
Length
16 bits
Contains the total object length in bytes. It must be a multiple of 4, and a minimum of 4.
Class-Num

The object class. Implementations of RSVP must recognize certain classes. For a list of classes implementations of RSVP must recognize, see Table 9.3a.
C-Type

The object type. Unique within Class-Num. The Class-Num and C-Type fields can be used together as a 16-bit number to define a unique type for each object. C-Types are defined for the two Internet address families IPv4 and IPv6 (only IPv4 is shown here). All unused fields must be sent as zero and ignored on receipt. For a list of C-Type field values, see Table 9.3b.
Table 9.3a Class-Num Fields
Field
Description
Null
Length must be at least 4, or any multiple of 4. Can appear anywhere within a sequence of objects; contents are ignored by the receiver.
Session
The destination IP address, protocol ID, and destination port. Defines a specific session for the other objects that follow. Required field.
RSVP_Hop
IP address of the RSVP-capable node that sent the message, and a logical outgoing interface handle.
Time_Values
Refresh period. Required for PATH and RESV messages.
Style
The reservation style, and style-specific information not already contained in the FLOWSPEC or FILTER_SPEC. Required for RESV messages.
Flowspec
The requested QoS parameters. Part of a RESV message.
Filter_Spec
Defines which session data packets must receive the requested QoS. Part of a RESV message.
Sender_Template
The sender’s IP address and possibly de-multiplexing information to identify the sender. Required for PATH messages.
Sender_Tspec
The traffic characteristics of a sender’s data flow. Required for PATH messages.
Adspec
Carries OPWA data, in PATH messages. OPWA is the abbreviation for “One Pass With Advertising,” and identifies a reservation setup model in which PATH messages gather information (the advertisement) that the receivers can use to estimate the end-to-end service.
Error_Spec
The actual error in a PATH-ERR, RESV-ERR or the confirmation in a RESV-CONF message.
Policy_Data
Carries the information that the local policy module uses to determine if the reservation is administratively permitted. In PATH, RESV, PATH-ERR, or RESV-ERR messages. This object is not fully specified at this time.
Integrity
Contains cryptographic data that authenticates the sender node and verifies the contents of the RSVP message.
Scope
An explicit list of sender nodes towards which the information in the message must be forwarded. In a RESV, ResvErr, or ResvTear message.
RESV_Confirm
The IP address of the receiver node that requested confirmation. In RESV or ResvConf messages.
Table 9.3b C-Type Fields
Object Name
C-Type
Class
Contains
Additional Information
IPv4/UDP SESSION object
1
1
IPv4 DestAddress (4 bytes),
Protocol ID, Flags, DestPort
Used in PATH messages to determine the network boundary, to control traffic policing. If the sender is not capable of policing, it sets this bit On in all PATH messages it sends, indicating to the first RSVP-capable hop to perform policing (and turn the flag off).
IPv4 RSVP_HOP object
1
3
IPv4 Next/Previous Hop Address, Logical Interface Handle (LIH)
LIH distinguishes logical outgoing interfaces. The LIH must be zero if there is no logical interface handle.
Time_Values
1
5
Refresh Period R
The refresh time-out period R used to generate this RSVP message, in milliseconds.
IPv4 Error_Spec
1
6
IPv4 Error Node Address (4 bytes), Flags, Error Code, Error Value, Error Node Address
Error Node Address is the IP address of the node in which the error was detected.Flags:0x01 = InPlace. This flag is used only for an ERROR_SPEC object in a RESV-ERR message. If On, this flag indicates that there was, and still is, a reservation in place at the failure point.0x02 = NotGuilty. This flag is used only for an ERROR_SPEC object in a RESV-ERRmessage, and it is only set in the interface for the receiver application. If On, this flag indicates that the FLOWSPEC that failed was strictly greater than the FLOWSPEC requested by this receiver.Error Code is a one-octet error description.Error Value is a two-octet field containing additional information about the error. Its contents depend upon the Error Type. See Table 9.12 for more information.
Scope

7
This object contains a list of IP addresses used for routing messages by using a wildcard scope without loops.
The addresses must be listed in ascending numerical order.
IPv4 Scope_List
1
7
IPv4 Source Address (4 bytes)

Style
1
8
Flags (8 bits), Option Vector (24 bits)
A set of bit fields giving values for the reservation options. If new options are added in the future, corresponding fields in the option vector are assigned from the least-significant end. If a node does not recognize a style ID, it can interpret as much of the option vector as it can, ignoring new fields that might have been defined.Flags: None yet assigned.Option Vector, assigned (from the left): 19 bits: Reserved2 bits: Sharing control00b: Reserved01b: Distinct reservations10b: Shared reservations11b: Reserved3 bits: Sender selection control000b: Reserved001b: Wildcard010b: Explicit011b - 111b: ReservedThe low order bits of the option vector are determined by theStyle:WF 10001bFF 01010bSE 10010b
Flowspec
1
9
Reserved (obsolete), Flowspec object

Intserv Flowspec
2
9
The contents and encoding rules for this object are specified in documents prepared by the Intserv working group (as described in RFC 2210).

IPv4 Filter_Spec
1
10
IPv4 SourceAddress (4 bytes), SourcePort

IPv4 Sender_Template
1
11
IPv4 SourceAddress (4 bytes), SourcePort

Intserv Sender_Tspec
2
12
The contents and encoding rules for this object are specified in documents prepared by the Intserv working group.

Intserv Adspec
2
13
The contents and encoding rules for this object are specified in documents prepared by the Intserv working group.

Type 1 Policy_Data
1
14
The contents of this object are set aside for further study.

IPv4 RESV_Confirm
1
15
IPv4 Receiver Address (4bytes)

Windows 2000 QoS Support
The following section describe the standards and technologies supported by Windows 2000 QoS.
Signaled QoS Architecture
Signaled QoS uses signaling protocols, such as RSVP, to alert the network to dynamically adapt traffic handling when priority treatment is required. This is in contrast to configured QoS in which the network is hardwired for QoS.
Windows 2000 deploys a signaled QoS architecture to provide QoS on an as-needed basis and to clear bandwidth for any other type of traffic when QoS is not in use for priority transmission. In this way, different types of network traffic can coexist. Configured QoS reserves bandwidth, whether needed or not, and wastes network resources that otherwise might be available to other types of traffic.
The use of a signaled QoS architecture also provides real-time feedback based on current network conditions, support for admission control, and topology awareness by using RSVP messages that flow from device to device, coordinating the allocation of resources and establishing a QoS reservation along the data path.
Qualitative Applications
Enterprise network administrators might be primarily concerned with providing QoS for mission-critical applications, such as Enterprise Resource Planning (ERP) applications, and secondarily concerned with providing QoS for multimedia applications.
As a result, Microsoft supports both quantitative and qualitative QoS in order to support ERP and other mission-critical applications that are qualitative in nature. Traditional RSVP signaling uses the IETF-defined Integrated Services (Intserv) model for expressing network resource requirements in a quantitative form. While this is suitable for multimedia applications such as IP telephony or video conferencing, it is not suitable for qualitative applications that cannot easily express resources required in the quantitative form required by Intserv.
Through extensions to RSVP signaling, Microsoft provides the necessary support for qualitative applications by enabling a new service type called the Qualitative Service Type (see “Traffic Control” in this chapter). Applications must be designed to include the requested service type in the basic QoS parameters. Applications must also be designed to create a policy element that includes the application and subapplication names. This policy element is compared against the policy database to determine which policy must be applied to that application traffic. All other QoS functionality is handled by the operating system. See the IETF-defined Internet Draft titled “Specification of the Qualitative Service Type” for detailed information about this service level.
The application and subapplication names are included in the signaling message with the service type. When this service type is requested, network devices interpret the request as a data flow that requires some special treatment, although the network devices do not know exactly what that treatment is. The network devices look up this application, the type of application subflow, and the requesting user in the policy database, and determine the best prioritization policy for this traffic. Therefore, the network devices do not actually allocate a specific quantity of resources to the application's traffic, but rather assign it to a particular Differentiated Class of Service. In addition, the network administrator must specify (using policy or registry settings) how to map data flows from different applications into a smaller set of aggregate service classes. This enables the prioritization of traffic from specific qualitative applications.
Layer 2 Integration
Windows 2000 QoS supports mapping of RSVP signals to layer 2 signals using IEEE 802.1p priority markings to enable the prioritization of traffic across layer 2 devices, such as switches, on a network segment. IEEE 802 refers to the layer 2 technology, including the Data Link layer and the Media Access Control (MAC) layer. The IEEE 802.1p standard defines how layer 2 devices handle traffic marked with 802.1p priority. The QoS Packet Scheduler performs 802.1p marking for any application that requests QoS using GQoS or the Traffic Control API.
On Ethernet, 802.1p priority is carried in Virtual Local Area Network (VLAN) tags defined in IEEE 802.1q/p (802.1p). A field in the 802.1q tag carries one of eight priority values (3 bits in length), recognizable by layer 2 devices on a network segment. This marking determines the service level the packet receives when crossing an 802.1p-enabled network segment. Figure 9.5 shows the location of the 802.1p priority bits within the 802.1q tag.
[image: image5.png]Priority Mark ~VLAN Identifier
(vID)

o1

TTTTT [TTTTTT]
876 4321[37654321

Octets [1 2

0= 18it

Figure 9.5 802.1p Tag
The 802.1p tag is placed inside the Ethernet header, between the MAC header and the data payload. A mapping from the service-type used by RSVP is made to one of these 802.1p priority values. A default mapping is defined on the hosts, however, sophisticated switches might direct hosts or routers to use mappings other than the default. The default markings for 802.1p priority service levels listed in Table 9.4 are hard-coded into the Windows 2000 QoS Packet Scheduler and can only be modified via the host registry.
Table 9.4 Windows 2000 Default 802.1p Priority Levels
Priority Marking
Service Level
0
Best-effort
1
< Best-effort
2
Reserved
3
Reserved
4
Controlled load
5
Guaranteed service 100ms bound
6
Guaranteed service 10ms bound
7
Reserved
The QoS Packet Scheduler must be installed on any host that performs 802.1p marking. If the layer 2 devices between the end nodes are not 802.1p-capable or enabled, layer 2 prioritization cannot be guaranteed across that segment.
Differentiated Class of Service
Windows 2000 QoS supports layer 3 Differentiated Services (Diff-serv), also called Class of Service (CoS). Diff-serv extends QoS across networks that are not RSVP-enabled, such as large transit networks that make up the core of the Internet.
The QoS Packet Scheduler performs Diff-serv marking for any application that requests marking from the GQoS API or the Traffic Control API. The IP header of the packet is marked with a priority value in the Type of Service (ToS) fields, also referred to as the Diff-serv Code Point (DSCP). This marking determines the service level the packet receives when crossing a Diff-serv network segment.
Type of Service Field and DSCP The DSCP value is established by setting the first six bits of the ToS field. Figure 9.6 illustrates the IP header with the ToS field enclosed.
[image: image6.png]4 -bit bit Type of Service | 16-bit Total Length
Version | Hender | (T0%) {in bytes)
Length

Figure 9.6 IP Header with TOS Field
The default mappings for DSCP, in decimal, are listed in Table 9.5. These 6-bit DSCP values show up in the upper 6 bits of the ToS field as specified in RFC 2474.
Table 9.5 DSCP Default Priority Markings
Priority Marking
Service Level
0
Best-effort
24
Controlled load
40
Guaranteed
48
Network control
0
Qualitative
The DSCP value has subsumed IP Precedence and is therefore backward compatible with IP Precedence. The IP Precedence contains the upper 3 bits of the DSCP field. These values are listed in Table 9.6:
Table 9.6 IP Precedence Markings
Priority Marking
Service Level
0
Best-effort
3
Controlled load
5
Guaranteed
6
Network control
0
Qualitative
The QoS Packet Scheduler must be installed on any host that performs or interprets Diff-serv markings. If the layer 3 devices between the end nodes are not Diff-serv–capable or enabled, QoS cannot be guaranteed across that segment.
Integrated Services over Slow Links
Special mechanisms are provided to perform traffic shaping on slow links, such as 28.8-kilobyte per second (KBps) modem links. On such links, large packets can occupy the link long enough to delay small audio packets that must be sent on the same link. This can cause problems with audio quality. To avoid this problem, traffic control fragments large packets at the link layer, sending only one fragment at a time. Latency-sensitive audio packets can then be inserted in between the larger packet’s fragments, thus reducing audio latency and improving audio quality.
ISSLOW, Integrated Services over Slow links, is a queuing mechanism that is used to optimize slow (low-capacity) network interfaces by reducing latency. In particular, it is designed for interfaces that forward traffic to modem links, ISDN B- channels, and sub-T1 links.
A typical packet occupies a modem link for up to half a second. Other packets queued behind it can experience significant delays. Packets that are long enough in length to exceed the maximum tolerable delay for their QoS flow are fragmented before transmission through the link, so that high-priority packets can be inserted between the fragments of the larger packet, and meet the required QoS parameters for speedy transmission. Figure 9.7 illustrates a Point-to-Point Protocol (PPP) link using ISSLOW.
[image: image7.png]Best-Effort Flow
e

000000005

go000n0--5- nteqrated traffic

o
Slarnies:
Service Flow A"

Figure 9.7 PPP Link with ISSLOW
For example, a PPP link is carrying best-effort traffic in addition to guaranteed service level flow “A.” The PPP link capacity is 100 KBps and the average latency is 100 milliseconds (ms). The best-effort traffic is consuming the majority of the bandwidth on the link, which is starving flow A of the resources it requires to provide guaranteed service levels. In this example, flow A cannot tolerate a delay of more than 145 ms. As the best-effort traffic fills the queue, packets from flow A arrive. The first best-effort packet (10 kilobits) is fragmented into 2-kilobit packets. The 8-kilobit packet from flow A is fragmented into 2-kilobit packets as well, and the flow A fragments are inserted between the best-effort fragments in order to meet the required latency guarantees of flow A.
ATM
ATM is a flexible protocol that transmits packets in 53-byte cells. ATM has emerged as a popular backbone technology because of its scalability and ability to integrate different types of network traffic. ATM-capable interfaces do not require ISSLOW because ATM already fragments packets into small cells to reduce latency and precisely schedule traffic as opposed to sending it best-effort. ATM negotiates a traffic contract between the end system and the ingress ATM switch prior to connection establishment, which includes a set of QoS parameters. Signaling includes a traffic contract that specifies an ATM service class. Table 9.7 describes the ATM-to-QoS Mappings.
Table 9.7 ATM-to-QoS Service Mappings
Intserv Service Class
ATM Service Class
Guaranteed Service
Constant Bit Rate (CBR) or Real-Time Variable Bit Rate (rtVBR).
Controlled Load
Non-Real-Time Variable Bit Rate (nrtVBR) or Available Bit Rate (ABR) with a minimum cell rate.
Best-Effort
Unspecified Bit Rate (UBR) or Available Bit Rate (ABR).
Service Level Agreements
It becomes difficult to guarantee QoS when data crosses a WAN. When traffic is carried end-to-end, for example, between remote offices, it traverses multiple domains, including the Internet. At the boundary of each domain, traffic is passed from one service provider to the other to cross the Internet. The different providers must negotiate agreements on how they must carry and handle each other’s traffic in order to ensure QoS. These negotiated contracts are called service level agreements (SLAs).
SLAs specify the rate at which traffic from one provider (the customer) must be carried by the other provider–usually the ISP. The administrator for each domain must ensure adequate network resources are available to support SLAs offered by their domain. The SLA might specify classes and marking rules. In addition, when providers agree to carry a customer’s traffic, they are agreeing to consume resources in their own network that might otherwise be sold to another customer. For example, some traffic flows consume more resources, making that flow expensive to carry. As a result, most providers limit the amount of traffic that they agree to designate as priority. This limitation is referred to as policing, and these limits are negotiated in the SLA. If packets arrive that exceed the agreed-upon SLA, the provider discards the flow or demotes the priority of the flow to one that meets the terms of the SLA.
In general, the source domain marks the priority of the packets before they leave the source network boundary, because it is easier to determine the appropriate marking closer to the sending application before the packets have been aggregated with other flows by another provider. However, sometimes another provider is requested to mark packets on behalf of the customer, such as when the customer is a legacy network. In such a case, the provider marks the packets only to the extent that the priority rate specified does not exceed what has been negotiated in the SLA.
Windows 2000 QoS Admission Control Service
IP telephony provides an excellent example of the need for QoS admission control. When a user makes an IP telephone call to another user, the success of the communication relies on available priority bandwidth. Any new IP telephony sessions have the potential to degrade the quality of the first call that is still in progress, since these calls must share the same bandwidth. To guarantee QoS and successful throughput of the original call, admission control is needed to protect network resources.
When admission control is implemented, new calls are not permitted unless there is bandwidth available in the appropriate service class, and policy checking is used to verify who has access to high-priority bandwidth and on what subnet. For example, a user can have rights to request video from a local multimedia server, but might be restricted from requesting any video if the traffic must traverse a backbone network and exceed the limits for that backbone.
QoS Admission Control Service (QoS ACS) is a Windows 2000 component for managing network resources on a shared network segment (subnet). The QoS ACS provides a control point for bandwidth requests from the servers so that requests do not flood the subnet simultaneously. It is not required to implement the QoS ACS on every subnet; the highest benefit is realized from implementing the QoS ACS on congested segments.
As shown in Figure 9.8, the QoS ACS exerts its authority by placing itself within the RSVP message path, intercepting PATH and RESV messages, and passing the user information to the Local Policy Module (LPM) for authentication and policy lookup.
[image: image8.png]Active Directory

|

=] TP APT

Policy Control || Local Policy

Madule Madule
msidipm.dil

QoS ACS
Qos Admission Control Service

! !

Figure 9.8 QoS Admission Control Service
The QoS ACS simplifies subnet administration by implementing:

Centralized subnet bandwidth policy configuration on a per-user or per-subnet or subnet basis, via the QoS Admission Control Service snap-in.

Transparency to users.

The ability to partition subnet resources between low-priority and high-priority traffic.

End-to-end network service with low delay guarantees.

Interoperability with LAN, WAN, ATM, Ethernet, and Token Ring configurations.

Support for multicast transmission of bandwidth reservation messages.
How QoS ACS Works
To deploy real-time multimedia or other mission-critical applications with an acceptable traffic rate, a network must commit to some level of guaranteed resource availability. In addition, the subnet management service must find some way for this priority traffic to coexist with traditional traffic. The alternative is a different physical network for each type of traffic: a very costly, high-administration solution.
The QoS ACS solves this problem by allowing the network administrator to centrally designate how, by whom, and when shared network resources are used. An QoS ACS performs logical allocation of network resources by participating in the signaling protocol, but does not allocate physical network resources such as network bandwidth or network queues. Note that it is RSVP messages that are passed to the QoS ACS, not the data packets which are ultimately transmitted from sender to receiver.
A host application can still send traffic not associated with a RSVP request and potentially overcommit the network. However, QoS ACS deployed with other traffic separation mechanisms can prevent network overcommitment. For example, on an Ethernet switch supporting IEEE 802.1p priority management, an QoS ACS can perform admission control to the high-priority band of traffic, and the 802.1p priority mechanism prevents the best-effort traffic from starving the high-priority traffic.
The QoS ACS server controls bandwidth for the subnet to which it is connected. Any devices on the same subnet (subnet clients) submit their priority bandwidth requests to that QoS ACS server.
Figure 9.9 shows an QoS ACS server configured to allow a maximum bandwidth reservation of 20 megabytes (MB). Each client represents a device on the managed subnet.
As each request is received by the QoS ACS server:

The QoS ACS verifies whether network resource levels are adequate. The ACS can verify for the sender, receiver, or both.

The requesting user identity is verified using the Kerberos protocol (the default Windows 2000 authentication service).

The QoS ACS policy for that user is retrieved from Active Directory (it might already be cached on the QoS ACS server).

The QoS ACS server checks the policy to see if the user has adequate rights for the request.

The QoS ACS approves or rejects the request.
[image: image9.png]Client & dient B dient C

* request

Qos ACS Host

Figure 9.9 How QoS ACS Works
 1.
A video-conferencing application on Client A requests 10 MB of reserved bandwidth. The QoS ACS server determines that there is available bandwidth and logically grants the reservation. This leaves 10 MB of available bandwidth out of the possible 20 MB.
 2.
A video-conferencing application on Client B requests 10 MB of reserved bandwidth. Because there is still bandwidth available, the QoS ACS server logically grants the reservation. No additional bandwidth is available.
 3.
A video-conferencing application on Client C requests 10 MB of reserved bandwidth. Because no priority bandwidth is available at this time, the QoS ACS server rejects the reservation. The application on Client C can then determine whether to send the data now at a best-effort service level or wait until priority bandwidth becomes available.
Clients and servers running Microsoft® Windows® 98 or Windows 2000 or subnet bandwidth management client software are automatically configured to use an available QoS ACS server to request priority bandwidth. The QoS ACS server sends IP multicast beacons, messages that notify subnet clients that the QoS ACS server is ready to receive bandwidth reservation requests. A client does not attempt to send a request to an QoS ACS server that is not currently beaconing on the subnet. The beacon protocol is documented in the IETF RSVP working group draft on Subnet Bandwidth Manager (SBM). A client connected to the shared media subnet listens for an QoS ACS beacon, and if it hears the beacon it sends its RSVP and PATH messages to the QoS ACS. If the client is not on an QoS ACS-managed subnet, or there is not currently an QoS ACS server operating on the subnet, RSVP messages are forwarded following standard IP routing methodology. Routers and bridges supporting the Subnet Bandwidth Manager client, that are connected to shared media such as Ethernet must also detect the QoS ACS on the segment and forward RSVP messages to the QoS ACS for that subnet.
The QoS ACS server grants or rejects bandwidth requests based on the QoS ACS policy rights of the requesting user. When the request is granted, priority bandwidth is logically (each hop must physically allocate bandwidth when it grants the request) allocated by the QoS ACS server, and the request is forwarded to the receiving client. The QoS ACS server rejects a request if the user does not have the right to reserve priority bandwidth on that subnet, to reserve the requested amount of bandwidth, or if the subnet itself is not capable of making the guarantee at the time of the request.
Traffic is never blocked if a request cannot be granted. Instead, the sending application is immediately notified and it determines whether to continue sending the data at a best-effort service level or wait and request priority bandwidth later. If the application chooses to send the data anyway, the traffic is carried by the network as best-effort traffic with no reservation.
Note that the QoS ACS performs admission control for both PATH (sender) and RESV (receiver) RSVP messages.
Implementing the QoS ACS
The QoS ACS is a Microsoft implementation. Subnet Bandwidth Manager (SBM), which defines using a standardized signaling protocol to enable 802 type LAN-based admission control for RSVP flows, is an IETF standard technology the Microsoft QoS ACS implements. The Windows 2000 QoS ACS incorporates SBM technology in order to perform admission control duties.
In heterogeneous networks, there can be several potential SBMs on a subnet. Eligible devices are (in ascending order of precedence):

SBM-capable switches that comprise the shared network

Attached SBM-capable routers

Attached SBM-capable hosts (includes any Windows 2000 QoS ACS servers)
These devices participate in an IP multicast–based election to determine the Designated SBM (DSBM) for that subnet. Any QoS ACS (SBM) clients on a subnet forward all RSVP messages to the DSBM. The remaining potential SBMs act as backups in the event that the DSBM stops functioning.
To maintain the integrity of RSVP reservations on a shared subnet, it is important that any router or host sending messages onto the subnet (and thereby consuming its resources) is an QoS ACS (SBM) client. On a managed subnet, network clients running Windows 2000 or Subnet Bandwidth Manager client software can use the QoS ACS to request bandwidth. The applications must also be QoS-enabled.
The QoS ACS can be deployed on any host running Windows 2000 Server. The QoS ACS operates at the IP network layer, servicing the most common application protocols, including all transport protocols in the TCP/IP protocol suite (TCP, UDP, and RTP). Applications that are not QoS-aware do not interact with the QoS ACS server, and receive best-effort service traffic levels from the network.
One QoS ACS server can be configured to manage multiple subnets or nonshared media such as demand-dial connections (for example, those found in Routing and Remote Access service configurations). The only restriction is that the QoS ACS cannot manage two different types of media at the same time. That is, it cannot manage a shared Ethernet segment and a demand-dial connection at the same time.
Before setting up admission control servers on your subnet, make sure your hardware, Windows configuration, and QoS ACS policies meet the necessary requirements outlined in this section.
Hardware Network adapters must be compatible with the IEEE 802.1p standard. This standard provides the mechanism necessary for traffic control.
Windows Configuration The QoS Admission Control Service must be installed on a Windows 2000 server that is a member of the domain that contains the subnets you intend to manage. A QoS ACS server must not also be an RSVP (QoS-aware) application server. However, it can be a file or print server.
QoS Packet Scheduler This must be installed on every client in the subnet that makes reservations by using the QoS ACS server. In addition, it is always a good practice to install the QoS Packet Scheduler on the QoS ACS server. Otherwise, heavy network traffic might cause RSVP messages sent by QoS ACS to be dropped.
Admission Control Logs Administrators can choose to enable the QoS ACS logging when needed as an aid to troubleshooting by using the logs to verify that RSVP messages are sent and received. Circular log files are created and are subject to administrative control in terms of their size, location, and total number. See “Troubleshooting” later in this chapter for more information.
QoS Admission Control Policies
A policy is a specification of resource limits. Policy is central to any implementation of QoS. Policy must be applied when deciding which traffic is eligible for preferential treatment. As a result, QoS deployment must include the following policy components:

Data-store. Contains the policy parameters, such as user names, and the network resources to which these are entitled. For the Windows 2000 QoS ACS, the policy store is Active Directory.

Policy Decision Points (PDPs). Inspects resource requests and accepts or rejects them based on the applicable policy. In Windows 2000 QoS ACS, this is the Local Policy Module (LPM).

Policy Enforcement Points (PEPs). Acts on PDP decisions. Network devices that physically or logically grant resources to flows. For the Windows 2000 QoS ACS, PEPs are routers, switches, or DSBMs.
Local Policy Module
The Local Policy Module (LPM) is the component on the QoS ACS server that retrieves and returns policy information from Active Directory. LPM is a generic term used to denote the implementation of a courier service used to provide the QoS ACS with a means of retrieving policy information from a particular policy store. LPMs are an integral part of the QoS ACS. The default Windows 2000 LPM, Msidlpm.dll, handles authentication by comparing the user information within the Kerberos ticket contained in the RSVP message with Active Directory policy information.
QoS ACS policy decisions to logically allocate bandwidth are enabled through the LPM’s access to the Windows 2000 Active Directory policy store. The QoS ACS server invokes the LPM when a policy object with a Windows 2000 Kerberos ticket is detected. The LPM takes the user name from the RSVP message policy object and looks up the applicable policy in the Active Directory. The LPM then:

Vetoes (rejects based on policy).

Accepts (note that the request can still be rejected by a third-party LPM).

Snubs (ignores; this allows acceptance).
The request is granted when at least one LPM accepts and no LPMs veto. The QoS ACS server can then decide to logically allocate bandwidth.
The LPM resides on the admission control server and provides authentication services. The QoS ACS also exposes an LPM API that allows independent software vendors to write customized LPMs. Third-party development of LPMs and policy elements (PEs) are possible in the future.
Security
There must be a secure way to prove to a QoS ACS server that an RSVP message is from a valid user in a trusted Windows 2000 domain. The message must contain the name of the user and the information must be cryptographically hashed by an entity that the QoS ACS trusts. Kerberos tickets are inserted into RSVP messages for this purpose.
The RSVP SP on a host, using the Kerberos Key Distribution Center (KDC) in the domain, can construct a one-way Kerberos ticket containing the identity of the user, a session key for the QoS ACS and a lifetime for the ticket. The ticket is encrypted with a shared key known by the KDC and the QoS ACS. The QoS ACS server uses the shared key to decrypt the ticket and get the session key, subsequently checking the cryptographic hash to make sure the RSVP policy object is genuine and has not been modified. This method also protects against ticket reuse via the cut-and-paste method.
An invalid Kerberos ticket causes an error log entry and a PATH-ERR or RESV-ERR message to be sent back to the originator. QoS ACS servers can be configured to generate network management alerts (SNMP traps) in such an event. For more information about SNMP, see “Simple Network Management Protocol” in this book.
Policy Store
The policy store for QoS ACS policy is Windows 2000 Active Directory. This provides a secure, replicated, persistent store of QoS ACS policy information. The information for the QoS ACS is owned by the QoS ACS and can only be changed by programs that run with QoS ACS administration privileges. QoS ACS objects in Active Directory are protected by security settings, so a QoS ACS server needs at least read-access to those objects. Creating and manipulating these objects requires administrative privileges.
The QoS ACS can access the policy data once it knows the name of the subnet for which it is the QoS ACS. The name of the subnet is configured when the QoS ACS service is installed on a Windows 2000-based server. Each subnet must be named so that configuration and policy information can be stored in the Active Directory. For a single LAN Ethernet configuration, the name of the subnet can be the IP prefix, for example, 192.1.1.0/24. Alternately, the network administrator can select names other than IP prefix names if there is more than one shared subnet per logical IP subnet.
Each QoS ACS locates its configuration using its subnet name to navigate to the correct container in Active Directory and read and cache the policy data at startup. Within Active Directory there is a QoS ACS service node that is the container for all information pertaining to QoS ACS policies and configurations. A QoS ACS server pulls its configuration information from Active Directory and the configuration information can be cached if it is sufficiently small.
Defining QoS ACS Policies
The following sections provide helpful considerations when defining QoS ACS policy. For procedural information on configuring individual policy parameters, see Windows 2000 Server Help.
Policy Hierarchy
QoS ACS policies are hierarchical, from most specific (a particular user on a specific subnet) to least specific (a user policy for all QoS Admission Control Service–managed subnets).
When a user requests priority bandwidth, the QoS ACS searches Active Directory for policy values in the following order:

A subnet-level user policy for the subnet on which the user is requesting priority bandwidth.

An enterprise-level user policy.
When a user has a group profile defined in addition to a user policy, precedence is applied in the following priority:

User policy on the current subnet

Group policy on the current subnet

Authenticated user on the current subnet

User in the Enterprise container

Authenticated user in the Enterprise container
Higher priority policy values always override lower priority policy values if the user has policies in both locations, and the same values are configured in both policies.
Enterprise-Level Policies
Enterprise-level policies are network-wide policies, and apply to traffic sent across any QoS ACS-managed subnet. This container holds two predefined policies:
 1.
Any Authenticated User: This policy is applied to all authenticated users in the domain. An authenticated user is any user logged on to a domain account with a valid user identity and password for that domain. It is recommended that this policy be customized with your common enterprise QoS parameters, and that it only define additional Enterprise policies if particular users have special requirements. These exception policies need only specify attributes that must be different from the default policy. The exception policy and default policy are aggregated when a user makes a bandwidth request.
 2.
Unauthenticated User: This policy is applied when an unauthenticated user makes a priority bandwidth request. This is useful for controlling the traffic of users who access the network but are not authenticated by a trusted Windows 2000 domain. An unauthenticated user is any user who is not logged on under a domain account but is connected to the network. For example, if you log on to a computer as a local user, the QoS ACS considers you unauthenticated because you are not logged on to a domain.
The values in the predefined Enterprise policies are listed in Table 9.8.
Table 9.8 Default Enterprise-Level Policy Values
Traffic Property
Any Authenticated User
Unauthenticated User
Data Rate
500 kilobits per second
64 kilobits per second
Peak Data Rate
500 kilobits per second
64 kilobits per second
Number of Flows
Two (2)
One (1)
Enterprise policies apply to all subnets unless the user also has a subnet-level policy. For example, if User A has a policy in the Enterprise container and a policy in the Subnet container for traffic on Subnet A, the Enterprise policy applies unless User A sends or receives data on Subnet A—then the Subnet policy applies.
Subnet-Level Policies
Under a subnet object, you can create subnet-level user policies. A particular user may have special requirements for specific subnets. To meet these requirements, you can create a user policy under that subnet object. Only those attributes that are different from the Enterprise policies must be configured.
It is recommended that first the default Unauthenticated and Authenticated user policies in the subnet container are modified to meet the needs of most users sending data on the subnet. If a user still has special resource requirements for that subnet, exception policies can be created. For example, to override the aggregate bandwidth for a particular user, you can create a subnet policy for the user with only the aggregate bandwidth value configured. All other values necessary for the bandwidth reservation come from one of the default enterprise policies.
Subnet Objects in the QoS ACS Console
For each managed subnet, you must create a subnet object. The properties in this object are used to configure all QoS ACS server properties on that subnet. This ensures that all QoS ACS servers (whether primary or backup) on the subnet handle client requests in the same way.
A subnet object is linked to the physical subnet and the QoS ACS server by the subnet IP address. The subnet object properties determine:

The traffic limits and service levels for the subnet

The logging and accounting properties for the QoS ACS servers

QoS ACS properties on each QoS ACS server
You must first create a subnet object before you can add subnet-level user policies.
Subnet properties are not to be confused with subnet-level user policies. You create a subnet object to set the traffic limits for the subnet and the QoS ACS server properties for the QoS ACS servers managing the subnet. Subnet-level policies, held in the Subnet container in the QoS ACS snap-in, specify user policies for requesting bandwidth on that subnet.
Troubleshooting
This section contains methods for determining the cause of QoS ACS- or QoS-related communication problems, and tools that can verify statistics and operations.
Basic Troubleshooting
Table 9.9 is a quick reference guide to basic troubleshooting steps to try in the event of unsuccessful QoS deployment:
Table 9.9 Basic QoS Troubleshooting
Symptom
Suggested Remedy/Investigation
No connectivity
 802.1p enabled on sender but not on receiver. Non-802.1p—capable device between sender and receiver. Failed traffic control installation; remove and reinstall QoS Packet Scheduler Service. Registry entry MaxOutstandingSends in \Psched\Parameters set too low.
No discernible effect of QoS
 End-to-end QoS signaling failure or traffic control failure. See “Troubleshooting Methodology” later in this chapter for assistance with tracing the source of the failure. Network not congested. No active QoS elements in those parts of the network that are congested. Packets not tagged correctly with 802.1p. Packets not marked correctly with DSCP.
QoS ACS policy ineffective
 Policy configured in QoS ACS that is not the DSBM on the relevant segment (use the tool Wdsbm to find out which QoS ACS is the DSBM). Verify that the QoS ACS is running under the account name of QoS ACSService. See Windows 2000 Server Help for procedural information.
RSVP messages dropped in the network
 Router in path dropping RSVP messages. Use Rsping to verify integrity of RSVP path. RSVP messages dropped due to congestion; verify 802.1p and DSCP marking for RSVP network control flow.
RSVP reservation requests rejected
 Insufficient resources provisioned in intervening routers or QoS ACS. Policy denial by QoS ACS.
Packets not tagged 802.1p
 Traffic control not installed. 802.1p not enabled on interface. QoS request denied for traffic flow. Non-802.1p-capable interface.
Packets tagged with unexpected 802.1p tag
 This is being overridden by a registry setting by the administrator. TCLASS override in effect. Packets nonconforming.
Packets marked with unexpected DSCP
 Registry override in effect. DCLASS override in effect.
Troubleshooting Methodology
A key to troubleshooting QoS is to verify that the signaling messages are traversing the network as expected and are not dropped or blocked for any reason. Once this is verified, the next step is to verify that traffic control is being effectively and correctly invoked for controlled load and guaranteed service levels.
The practical first step is mapping out the network topology to identify all the network devices in the path from sender to receiver, and identify which devices participate in the RSVP signaling. It is important to identify these devices as they intercept RSVP messages that transit the shared segments. Tracert and Wdsbm are useful tools for determining network topology.
Tracking RSVP Messages from Source to Destination Figure 9.10 describes the process of how to verify end-to-end signaling. Figure 9.11 describes the process of how to track the passage of RSVP messages.
[image: image10.png]Start

!

[C] Enter verify end-to-end
signaling integrity,

Inspect Revptrace

t file on sender for
il of ESU
esssas

Ho———— [Inspect Rsuptrace

IsRESV file on receiver for
Yes amiving at arrival of PATH message,
sender?

End-to-end
signaling
verified xit.

Na
1 path arriving at

Yes receiver?

Use Rsvptrace on
receiver to verify
receiver API call

O—tio———— [Receiving
Receiver application
o5 APl call problem

Use Rsvptrace on
receiver to verify
transmission of

RESV message

cociver Qos'sP
s transmitting problem
RESY message?

Trace RSVP

messages (RESY
upstream to
senden).

Use Revgtrac on
J sender to verify
Sonder ot

No———— [Sending
Sender API call? applcation
Yes prablem.
Use Rsvptrace on
tJ sender to verify
transrrission of
PATH message.
’—Na Sender
< Sender transmitting Qs

Yes PATH message?

e RSP
- messages (PATH
Sonstream ts

Figure 9.10 Verifying of End-to-end Signaling
[image: image11.png]Start

!

[] Enter trace RSvP
messages.

N,

15 the reciever (PATH)
Yes or sender (RESY) the
l next RSUP hap?

Use Netmen to
verify that
message is
on upstream
netwark
segment
(PATH) or
downstream
netwark
segment
(RESY)

No-
Netmon

indicates
message
present?

This hop

has a
problem.

—
The previous
hop has a send
problem

Na’

N,
Sending toshared [+

Yes media?

Use wasbm on sender
to determine presence
o

v
Inspect Rsvptracs file

on DSBM for arrival of
RSUP message for
session of interest.

RSVP message
arrived at DSEM?
Yes

Inspect Rovatrace fils
on DSBM ta verify
amamisson of Reve
Tessage, i the cage
S nan microsoh bans)
Shenmta racing mean:
i

Use Trasert fram sender to
receiver (PATH) or receiver

to sender (RESV) to determine
next layer 3 hop!

Inspect next layer 3 hop for arrival
of RSVP message. For example,
use CLI sho ip rsvp sender (PATH)
or sho ip rsvp req (RESV).

Use Natmon
== to verify that
Tasiage s
o irsbream
netuork seqment

RSVP
Yes message
arrived at next
Tayer 3 hop?

(PATH) or
downstream
Use Nistmon to | netwark
werify that segment (RESV)
message is on
downstream
Teoaty {—to—s [The previous
(PATH) o N, send prolem
(PATDRT Yes indicates
netwark message
segment. present;
{RES)

This hop has a
receive problem.

N

J'_ Message transmitted
Y5 by DsBM?

E=
Na—> Admission

Message — contral
Yes admissable? problem.

Verify admissbility of RSUP
message by DSBM.

Other DSEM

problem.

O
etmon indiates
e message present?

)
=
-

Message
Yes admissable?

Verify admisshility of RSVP
message by DSBM

QoS Admission
Cantral

problem

+
Layer 3 hop

problem.

Figure 9.11 Tracing RSVP Messages
Figure 9.12 describes how to verify the functionality of traffic control.
[image: image12.png]T
<

Yes

rt

Enter verify traffic
contral functionality,

Install QoS packst
scheduler service
from Netwark and
Disl-up Connections.

No——————

15 QoS packet scheduler
installed on sender?

Use Temon to verify
correct service types
far traffic contral flaws

o [Install QoS packst
scheduler service

Flows have
better than from Network and
best-effort Dial-up Connections

Inspect Local Area
Connection properties,
Advanced tab for 802.1p
enable/disable status

o [Enable 802,15,

802 .1p enabled?

Yes

=

Use Netmon to
verify that sender is
sending 802.1p tag

Ho——————— [[] Problem with
¢ HNetmon indicates network adapter.
Yes sender tagging

correctly?

End verify traffic

contral functionality.

Figure 9.12 Verifying Traffic Control Functionality (802.1p)
QoS ACS Logs
QoS ACS transactions (RSVP messages) can be collected by configuring the QoS ACS service logs. The QoS Admission Control accounting service and RSVP logging service log messages can be viewed in the Windows 2000 Server Event Viewer. These logs are more detailed and are recorded as fixed (not customizable) ASCII-format files that can be viewed with a text editor or converted to an open database connectivity (ODBC) database. Do not confuse QoS ACS logs with the default logging carried out by Windows 2000 Server (viewed by using the Event Viewer).
You can control a number of options for the creation of each type of log, including the directory in which the files are created, and whether to create single or multiple files. The log files are circular. When you specify a maximum file size, one of two things occur when that limit is reached:

Another log file is created, until the maximum number of log files you specified is also reached. This is useful for viewing a history of transactions for a pattern versus viewing only the latest information.

– Or –

The first file is simply overwritten each time the maximum file size is reached. This prevents the ability to look at historical data.
You do not have to stop QoS ACS services to view log files. New log entries are generated whenever bandwidth is requested. This causes a progressive increase in log file size or in the number of log files. Therefore, you might need to balance the gathering of detailed data against the need to limit files to a manageable size and number. Extremely large log files can compromise performance because each file contains approximately 500 messages per megabyte. Additionally, smaller log files are easier for the administrator to search for specific events. Consider available disk space when setting log file sizes and monitor the storage space in use whenever using any logging features.
Accounting Logs
The accounting log information is useful for:

Planning for the number of users who regularly reserve resources on the network.

Assessing current and future network bandwidth needs.

Troubleshooting QoS Admission Control Service–related network communication errors.
Accounting log information includes:

Who is using network resources.

The date and time of individual sessions.

Addressing information for individual sessions.
All fields in the log are terminated with a semicolon (;). Following is an example of an accounting log record:
1998/11/18 13:58:00:0578;192.168.3.5:4000[17];Start Sender;ENGR\Vincent;192.168.3.4:4000;New; 250000,1500,300000,10,1500
For accounting purposes, the most significant values in the entry show that the QoS Admission Control host approved a bandwidth request on November 18, 1998 (1998/11/18), at 1:58 P.M. (13:58:00:0578), which initiated a session (StartSender) with ID 192.168.3.4 and began sending data from a host in the Engineering (ENGR) domain for user Vincent.
Table 9.10 describes each field in the log.
Table 9.10 Log File Fields
Field
Description
Date/time
Date and time of the record, in Greenwich Mean Time (GMT).
Session IP addressing information
The receiver's IP address, the port number on which the data is sent (following the colon), and the decimal protocol ID of the protocol used, enclosed in brackets ([]). To match protocol IDs with protocol names, see RFC 1700.
Record type
One of the following: Start Sender, Start Receiver, Stop Sender, Stop Receiver, Reject Sender, or Reject Receiver.
User ID
The domain and user name, preceded by a backslash (\), of the sender or receiver.
IP addressing information for the last hop
The IP address of the last hop and either the port number on which the data is sent (following the colon) or the hexadecimal address of the network adapter (if the host relaying the message is a multihomed device). For example, 192.168.2-2.106:0x00000000.
Message status
One of the following: New, Modify, Stop Sender reason, Reject Sender, or source IP address of the data flow.
Message detail
Sender's traffic information, receiver's traffic information, Stop Receiver reason, and Reject Receiver reason.
Accounting and Billing
You can use information generated by the QoS ACS for accounting and billing. From the standpoint of network management, the accounting functions give you an overview of the ways in which your QoS resources are used. QoS ACS accounting shows you exactly who is using a resource, and for how long. Failed requests are also recorded, providing a record of who is trying to use QoS services without permission.
This information is available because QoS ACS servers log RSVP messages recording start and ending times of the flow, the resource requested and the user who is making the request. These records can be collected from the QoS ACS server and used to generate utilization reports for network managers. Alternately, these records can be processed to generate network usage billing.
RSVP Logs
You can configure the logging of RSVP messages. The RSVP log provides information similar to that of Network Monitor (NetMon). Using the log, you can trace who sends and receives RSVP messages and whether RSVP messages are accepted or rejected. This information is useful whenever QoS Admission Control Service–related network communication errors occur.
RSVP log information can help you troubleshoot by identifying:

The date and time of the RSVP message.

Addressing information of the message sender and receiver.
In the RSVP log file, each field is terminated with a comma (,). A vertical bar (|) indicates the end of a group of traffic information. Following is an example of an RSVP log record:
1998/02/06 15:35:05, PATH ,192.168.3.6,4000,17,|,
192.168.3.5,0x00000000,|,30000,|,
192.168.3.4,4000,|,3.000E+004,1.50E+003,3.300E+004,10,1500,|,
0,0.000E+000,1500,1.#IOE+000
The most significant values in the entry show that on February 6, 1998, at 3:35 P.M., a PATH message originating on host 192.168.3.4 was sent to receiver 192.168.3.6.
Table 9.11 describes each item in the log in detail, showing the parameters that each message in the RSVP log contains.
Table 9.11 RSVP Log File Fields
Field
Description
Date/time
Date and time of the message, in Greenwich Mean Time (GMT)
Type of message
PATH, RESV, PATH-ERR, RESV-ERR, PATH-TEAR, or RESV-TEAR, with additional parameters: Confirmation request: RESV-CONF or No RESV-CONF, indicating whether the receiver wants a reservation confirmation. Scope: An explicit list of sender hosts (in wildcard reservation-style format) toward which the information in the message is forwarded. Reservation style: Determining whether resources are reserved by fixed filter, share explicit, or wildcard. For more information about these styles, see RFCs 2205, 2210, 2215, and 2216. For detailed information about these parameters, see RFC 2205.
Session IP addressing information
The receiver’s IP address, the port number on which the data is sent, and the decimal protocol ID of the protocol used, followed by a vertical bar (|). For a list matching protocol IDs with protocol names, see RFC 1700.
IP addressing information for the last hop
Either the IP address of the last hop and the port number on which the data is sent (following the colon), or the hex address of the network adapter if the host relaying the message is a multihomed device, followed by a vertical bar (|).
Refresh interval
The frequency at which, in milliseconds, this message is sent.
Sender IP addressing information
The sender’s IP address, the port number on which the data is sent, and the decimal protocol ID of the protocol used, followed by a vertical bar (|).
Bucket rate
The bucket data rate.
Bucket size
The size of the bucket in which packets are grouped for transmission. For more information on packet buckets, see RFCs 2210, 2215, and 2216.
Peak rate
The burst rate of the packets.
Packet size
The minimum packet size for transmission.
MTU size
The maximum packet size for transmission, followed by a vertical bar (|). This field, plus the previous four fields, make up the Tspec (traffic parameters for the flow). For more information on the Tspec, see RFCs 2205, 2210, 2215, and 2216.
Adspec
The remaining fields in the record indicate the traffic parameters for the receiver.
RSVP Error Codes
Table 9.12 lists the error codes that appear in RESV-ERR messages.
Table 9.12 Error Codes and Values
Error Code
Description
00
Confirmation. Reserved for use in the ERROR_SPEC object of a RESV-CONF message. The Error Value will also be zero.
01
Admission control failure. Reservation request was rejected by admission control due to unavailable resources.The 16 bits of the Error Value field are ssur, cccc cccc, and cccc, where the bits are:ss = 00: Low-order 12 bits contain a globally-defined sub-code (values listed below).ss = 10: Low-order 12 bits contain a organization-specific sub-code. RSVP is not expected to be able to interpret this except as a numeric value.ss = 11: Low-order 12 bits contain a service-specific sub-code. RSVP is not expected to be able to interpret this except as a numeric value. Since the traffic control mechanism might substitute a different service, this encoding might include some representation of the service in use.u = 0: RSVP rejects the message without updating local state.u = 1: RSVP may use the message to update local state and then forward the message. This means that the message is informational.r: Reserved bit, must be zero.cccc cccc cccc: 12-bit code.The following globally-defined sub-codes can appear in the low-order 12 bits when ssur = 0000:Sub-code = 1: Delay bound cannot be met.Sub-code = 2: Requested bandwidth unavailableSub-code = 3: MTU in flowspec larger than interface MTU.
02
Policy Control failure. Reservation or path message has been rejected for administrative reasons (for example, required credentials not submitted, insufficient quota or balance, or administrative preemption). This Error Code can appear in a PATH-ERR or RESV-ERR message. Contents of the Error Value field are to be determined in the future.
03
No path information for this RESV message. No path state for this session. RESV message cannot be forwarded.
04
No sender information for this RESV message. There is path state for this session, but it does not include the sender matching some flow descriptor contained in the RESV message. RESV message cannot be forwarded.
05
Conflicting reservation style. Reservation style conflicts with styles of existing reservation state. The Error Value field contains the low-order 16 bits of the Option Vector of the existing style with which the conflict occurred. This RESV message cannot be forwarded.
06
Unknown reservation style. Reservation style is unknown. This RESV message cannot be forwarded.
07
Conflicting destination ports. Sessions for same destination address and protocol have appeared with both zero and non-zero destination port fields. This Error Code can appear in a PATH-ERR or RESV-ERR message.
08
Conflicting sender ports Sender port is both zero and non-zero in PATH messages for the same session. This Error Code can appear only in a PATH-ERR message.
09, 10, 11
(reserved)
12
Service preempted. The service request defined by the STYLE object and the flow descriptor has been administratively preempted. For this Error Code, the 16 bits of the Error Value field are:ssur cccc cccc ccccThe high-order bits ssur are as defined under Error Code 01. The globally-defined sub-codes that can appear in the low-order 12 bits when ssur = 0000 are to be defined in the future.
13
Unknown object class. Error Value contains 16-bit value composed of (Class-Num, C-Type) of unknown object. This error must be sent only if RSVP is going to reject the message, as determined by the high-order bits of the Class-Num. This Error Code can appear in a PathErr or ResvErr message.
14
Unknown object C-Type. Error Value contains 16-bit value composed of Class-Num or C-Type of object.
15-19
(reserved)
20
Reserved for API. Error Value field contains an API error code, for an API error that was detected asynchronously and must be reported via an upcall.
21
Traffic Control Error. Traffic Control call failed due to the format or contents of the parameters to the request. The RESV or PATH message that caused the call cannot be forwarded, and repeating the call is futile. For this Error Code, the 16 bits of the Error Value field are:ss00 cccc cccc ccccThe high-order bits ss are as defined under Error Code 01.The following globally-defined sub-codes can appear in the low order 12 bits (cccc cccc cccc) when ss = 00:Sub-code = 01: Service conflict. Trying to merge two incompatible service requests.Sub-code = 02: Service unsupported. Traffic control can provide neither the requested service nor an acceptable replacement.Sub-code = 03: Bad Flowspec value. Malformed or unreasonable request.Sub-code = 04: Bad Tspec value. Malformed or unreasonable request.Sub-code = 05: Bad Adspec value. Malformed or unreasonable request.
22
Traffic Control System error. A system error was detected and reported by the traffic control modules. The Error Value contains a system-specific value giving more information about the error. RSVP is not expected to be able to interpret this value.
23
RSVP System error. The Error Value field provides implementation-dependent information on the error. RSVP is not expected to be able to interpret this value.
In general, every RSVP message is rebuilt at each hop, and the node that creates an RSVP message is responsible for its correct construction. Similarly, each node is required to verify the correct construction of each RSVP message that it receives. If a programming error allows an RSVP to create a malformed message, the error is not generally reported to end systems in an ERROR_SPEC object; instead, the error is simply logged locally, and perhaps reported through network management mechanisms.
The only message formatting errors that are reported to end systems are those that can reflect version mismatches, and which the end system might be able to circumvent (for example, by falling back to a previous C-Type for an object; see code 13 and 14 above).
The choice of message formatting errors that an RSVP may detect and log locally is implementation-specific, but it typically includes the following:

Wrong-length message: RSVP Length field does not match message length.

Unknown or unsupported RSVP version.

Bad RSVP checksum.

INTEGRITY failure.

Illegal RSVP message type.

Illegal object length: not a multiple of 4, or less than 4.

Next hop/Previous hop address in HOP object is illegal.

Bad source port: Source port is non-zero in a filterspec or sender template for a session with destination port zero.

Required object class (specify) missing.

Illegal object class (specify) in this message type

Violation of required object order.

Flow descriptor count wrong for style or message type.

Logical Interface Handle invalid.

Unknown object Class-Num.

Destination address of RESV-CONF message does not match Receiver Address in the RESV_CONFIRM object it contains.
Tools
This section describes various tools and their roles in troubleshooting QoS implementations. Certain tools are described only briefly; for further details, see the Microsoft® Windows® 2000 Resource Kit Tools Help.
PathPing
This TCP/IP utility has new functional parameters related to QoS:
-t
If packets are sent with an 802.1p tag, during the transition between a 802.1p aware network and network that is not 802.1p–aware, the switch connecting these two networks may be configured to strip out the tag before forwarding the packets onto the non-802.1p–aware network. Otherwise, non-802.1p–aware devices which cannot recognize the tag may discard the packet, wrongly assuming that it was a corrupted. Enabling this parameter sends the packets with a tag that identifies the network element that is tossing the tagged packet.
-r
This switch tests whether each node in the path is RSVP-aware. A node is considered RSVP-aware if it responds to a protocol 46 message (or times out). It is considered non-RSVP–aware if it sends an ICMP protocol unreachable error message. Note that if the RSVP service is not running on the node, it will return an ICMP Protocol unreachable error message.
For more information about PathPing, see “TCP/IP Troubleshooting” in this book.
Wdsbm
This tool identifies the QoS ACS that manages the segment to which a specific host is attached.
wdsbm -i <local interface IP address>
Wdsbm prints information (including the IP address) that pertains to the QoS ACS that is intercepting RSVP messages to and from the specified interface. Since the QoS ACS can block RSVP messages, it is useful to know the IP address of the QoS ACS when attempting to isolate the location at which RSVP messages are blocked.
Rsvptrace
Rsvptrace generates a log of RSVP messages that are sent and received by the RSVP SP on a host. The tool also shows API calls from sending and receiving applications to the RSVP SP. By running Rsvptrace on the sender and receiver, it is easy to verify that applications are making the required calls to the API, the RSVP SP is generating RSVP messages, and the messages are arriving from the network. Rsvptrace can be run on the QoS ACS to inspect received and transmitted RSVP messages. However, since QoS ACS servers do not run multimedia applications, no API entries will appear in the trace.
To enable RSVP tracing on a host, add the entry EnableTracing to the following registry subkey:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\RSVP \Parameters
with a data type of REG_DWORD. Set the value of the entry to 0x1.
The RSVP service must be restarted after this entry is added to the registry. Use Computer Management to restart the RSVP service.
Caution Do not use a registry editor to edit the registry directly unless you have no alternative. The registry editors bypass the standard safeguards provided by administrative tools. These safeguards prevent you from entering conflicting settings or settings that are likely to degrade performance or damage your system. Editing the registry directly can have serious, unexpected consequences that can prevent the system from starting and require that you reinstall Windows 2000. To configure or customize Windows 2000, use the programs in Control Panel or Microsoft Management Console (MMC) whenever possible.
The RSVP service must be restarted after this value is added to the registry. Use the Computer Management interface to restart the RSVP service.
The RSVP SP begins generating the Rsvptrace log in the directory %windir%\system32\logfiles.
Log files are named RsvpTraceXX.txt, where “XX” is a number from 00 to 09. Each log file is limited in size. When a log file fills up, another one is created using the next sequence number for the “XX” part of the log file name. Once the last log file sequence number is used and the last log file is filled, the first log file is overwritten. The user should inspect the list of log files and their creation dates to see which log file is currently being written.
The user can monitor data being written to the log file in real time by typing:
tail -f RsvpTraceXX.TXT
where “XX” is the trace-file number.
Following is a sample from a sender’s Rsvptrace log:
1999/04/20 17:53:42:0679; From API; PATH
;172.31.8.159,5003,17;0.0.0.0,0x00000000;30000;172.31.3.21,3128;1.028E+0
1999/04/20 17:53:42:0679; 172.31.8.159 <= 172.31.3.21; PATH
;172.31.8.159,5003,17;172.31.3.21,0x00000000;1500;172
1999/04/20 17:53:44:0679; 172.31.8.159 <= 172.31.3.21; PATH
;172.31.8.159,5003,17;172.31.3.21,0x00000000;3000;172
1999/04/20 17:53:46:0773; 172.31.8.159 <= 172.31.3.21; PATH
;172.31.8.159,5003,17;172.31.3.21,0x00000000;6000;172
1999/04/20 17:53:54:0617; 172.31.8.159 <= 172.31.3.21; PATH
;172.31.8.159,5003,17;172.31.3.21,0x00000000;12000;17
1999/04/20 17:54:07:0664; 172.31.8.159 <= 172.31.3.21; PATH
;172.31.8.159,5003,17;172.31.3.21,0x00000000;24000;17
1999/04/20 17:54:12:0601; 172.31.3.1 => 172.31.3.21; RESV
;172.31.8.159,5003,17;172.31.3.1,0x00000000;30000;No Re
1999/04/20 17:54:12:0679; From API; PATH
;172.31.8.159,5003,17;0.0.0.0,0x00000000;30000;172.31.3.21,3128;1.028E+0
 1.
The first entry shows that at 17:53:42:0679, the sending application invokes the QoS API, which transmits a PATH message.
 2.
The next entry shows the PATH message transmitted to the network. There is no guarantee that it is actually sent to the network, but it does verify that the RSVP SP has passed the message to the TCP/IP stack for transmission to the network.
 3.
Additional PATH messages are sent to the network. Messages are refreshed at 30-second intervals.
 4.
At 17:54:12:0601, a RESV message arrives at the sender for the session, completing the reservation process. This indicates that the PATH message arrived at the end node (receiver) and the receiver responded with a RESV message.
 5.
At 17:54:12:0679, another API PATH is logged. This indicates that a proxy for the application (in the RSVP SP) is refreshing the RSVP state on behalf of the application.
The IP addresses in the PATH message log entries show that the RSVP session is 172.31.8.159 and the sender is 172.31.3.21. The session address is equivalent to the receiver address in the case of unicast, and to the multicast session address in the case of multicast.
The IP addresses in the RESV message entry show that the RESV message is sent to the sender at IP address 172.31.3.21. However, it shows that the RESV message arrives from the previous hop—172.31.3.1—which is the IP address for the router that sent the RESV message to the sender.
Netmon
Network Monitor (Netmon) monitors traffic on a network. Versions of Netmon later than version 2 include RSVP-parsing functionality. Netmon can also monitor 802.1p tagging.
Netmon can be run on the sending host, the receiving host, QoS ACS servers and on intermediary hops. Netmon requires installation. For information about installing Netmon, see the Windows 2000 Server Help.
Running Netmon on a Host
Generally, Netmon needs to be run on a computer that is used strictly as a traffic monitor, as opposed to end nodes or QoS ACS servers (any hosts that generate RSVP messages). It is also important that the monitoring computer is not attached to the network by use of a dedicated port on a learning bridge type switch (most modern chassis-based switches). Otherwise, the switch can prevent the monitoring computer from seeing traffic that is not addressed to it specifically. Generally, smaller, cheaper hubs do not act as learning bridges and flood traffic from each port to all other ports. Use this type of hub to attach the monitoring computer to the same switch port as the next or previous hop.
Installing and using Netmon on both the sender and receiver is recommended.
Capture and Display Filters
Set a capture filter for all messages to and from the end node. The capture needs to be started on each node before the sending application is started. RSVP messages are typically refreshed every 30 seconds; take this into account when deciding how long to let the capture run.
Once the capture is complete, use the display filter to extract RSVP messages only from the captured data. Traces of RSVP messages should indicate a PATH message sent by the sender, arriving some time later at the receiver. The receiver responds with a RESV message, which arrives at the sender. If the traces do not confirm this behavior, one or both of the message types might have been dropped in transit or were not generated by the end node. As long as the application is running, no PATH-TEAR or RESV-TEAR messages display in the trace. PATH-TEAR or RESV-TEAR messages might indicate that one of the application peers has terminated, or that a RSVP-aware network node has rejected a request.
Monitoring 802.1p
To monitor 802.1p tags, copy the Parser.dll file from the Microsoft® Windows® 2000 Resource Kit Tools Help tools directory to the root directory of your Netmon installation directory. Next, copy the Mac.dll file from the same tools directory to the Parsers subdirectory under your Netmon installation directory. Once these files have been copied, restart Netmon.
Netmon only reveals 802.1p tags if it is run on a host that does not have 802.1p-capable drivers (or on which 802.1p functionality has been disabled). Drivers that are 802.1p-capable strip off the 802.1p tags before handing the packets to Netmon.
Rsping
Rsping determines whether a specific network path is blocking RSVP signaling messages. If you suspect that certain RSVP messages are not arriving at their intended destination, Rsping can detect if the network is at fault. Unlike Rsvptrace, which allows the user to observe RSVP messages arriving at or generated from a specific node, Rsping enables the user to generate specific styles of RSVP messages for transmission to an RSVP peer.
Both PATH and RESV messages are generated when Rsping is run. It is also possible to specify:

If these messages are multicast or unicast.

Intserv service type.

Flow rate.
With Rsping, multicast RESV messages use the wildcard filter (WF) style, while unicast messages use the fixed filter (FF) style. In addition, the peak rate requested is always twice the flow rate specified.
Invoke Rsping using the parameters that most closely emulate the RSVP messages generated by the real application. These messages can be observed by inspecting the Rsvptrace file on the transmitting host.
Tcmon
Tcmon is a traffic control monitor that can be used to:

Verify the creation of kernel traffic flows.

Identify characteristics and statistics associated with interfaces (such as whether or not 802.1p is enabled).

Identify characteristics and statistics associated with each flow (such as service type, tagging or marking in effect, bytes transmitted on the flow, and so on).
For example, the Microsoft® NetMeeting® video conferencing application creates a single flow for audio traffic and another flow for video traffic. These should both be visible by using Tcmon (invoke Tcmon for the appropriate transmit interface and to set it to Auto Refresh mode). In addition, Tcmon indicates a third flow for the Network Control service type. This flow is for RSVP signaling traffic and remains active as long as RSVP is active.
Initially, Tcmon reports that the two traffic flows created on behalf of the application are the best-effort service type. The service type remains best-effort until the network approves the sender’s RSVP request. At that time, traffic control is invoked and the flow’s service types change to controlled load or guaranteed. If this does not happen, then either the network has not confirmed the QoS request, or a problem exists with local traffic control or the RSVP SP.
To install Tcmon, run Setup.exe from the Tcmon Install directory on the Resource Kit Tools Help.
To run Tcmon, at a command line type:
tcmon
The Tcmon dialog box appears. Select the appropriate interface for which traffic control is to be monitored. When looking for changes in flow parameters (such as changes in service type), it is helpful to enable the Auto Refresh mode (on the Refresh menu of the Tcmon dialog box).
System Monitor
System Monitor (Sysmon) monitors traffic control, RSVP, and QoS ACS components. It is a standard component of Windows 2000. See the Windows 2000 Server Help for instruction on running System Monitor.
Once System Monitor is active, from the Add Counters dialog box:

Select Psched Pipe to monitor traffic control parameters such as number of flows installed and number of packets queued in various QoS Packet Scheduler components.

Select QoS ACS/RSVP Service to monitor parameters such as API calls and RSVP messages.
Qtcp
Qtcp measures end-to-end network integrity and service quality for QoS verification. Qtcp sends a sequence of test packets through a network and reports on the queuing delay experienced by each packet. Packets that do not arrive at the destination are recorded as dropped packets.
Qtcp performs the following:
 1.
Reports precise microsecond delay variations.
 2.
Invokes network QoS by default, and is useful for evaluating QoS mechanisms.
 3.
Can simulate traffic flows for a range of user-selected packet sizes.
 4.
Can simulate traffic flows shaped to a specific range of token bucket parameters.
 5.
Can be used on an isolated, controlled network, or on a production network.
 6.
Generates detailed result logs.
A Qtcp session is invoked on both sending and receiving hosts. Qtcp uses the GQoS API to invoke QoS from local traffic control and from the network. The Qtcp sender causes an RSVP PATH message to be sent towards the receiver and waits until a response is received. The Qtcp receiver waits for an RSVP PATH message from the sender and responds by transmitting an RSVP RESV message.
Receipt of the RESV message at the sender initiates the measurement phase. At this time, the sender submits buffers to the kernel for transmission. The kernel paces the transmission of traffic according to the token bucket parameters and service type selected by the user. As packets are transmitted, the sequence number and the local time (to a precision of 100 nanoseconds) is recorded on each packet.
When packets arrive at the receiver's traffic control, the local time of the receiving host is recorded in each packet, and traffic control passes the packets to the receiving Qtcp peer. The receiving Qtcp peer process maintains a list of all received packets, including the packet sequence number, the time sent, and the time received.
The sending portion of the test terminates on the sending side when the transmitter has sent the required number of packets (the default of 2,048 packets can be overridden). Following the transmission of the last packet, the sender sends a terminating sequence of 10 termination packets. The test terminates on the receiving side upon receipt of a termination packet, or upon receipt of the required number of packets. On particularly congested links, the receiver might never receive the required number of packets, because the termination packets can be dropped. In this case, the Qtcp receiver can be manually terminated by typing:
 q
Upon termination, the receiver Qtcp parses and processes the log of received packets. Three logs are generated:

<File_name>.sta contains summary statistics. It reports the total number of packets received and specifies the sequence number of each dropped packet.

<File_name>.raw contains a detailed log showing normalized send time and receive time for each packet, the latency (difference between sent and received time), packet size and sequence number.

<File_name>.log is a result of normalizing the results of the second file to account for any clock discrepancies between the two hosts. Normally, this is negligible, but on lightly loaded, high-speed LANs it can be significant.
To run Qtcp on the sender, at a command line type:
qtcp –l 64 -t <IP Address>
where 64 is the buffer size in bytes, and <IP Address> is the IP address of the receiver. The following is displayed:
Initiated QoS connection. Waiting for receiver.
To run Qtcp on the receiver, at a command line type:
qtcp -f <filename> –r
The following is displayed:
Waiting for QoS sender to initiate QoS connection.
The receiver and the sender await the required exchange of RSVP messages before starting the data transfer. By default, kernel traffic control paces transmitted packets at a rate of 100 KBps (kilobytes per second).
Qtcp displays a series of dots on the node consoles. Each dot corresponds to 100 packets sent or received. The first dot is printed on the receiver prior to the actual receipt of the first 100 packets. The dots indicate that Qtcp is functional.
Upon transmission of the specified number of packets, the sender terminates with a message regarding the transmission rate. Next, upon receipt of the required number of packets (or termination packets), the receiver terminates with the message
Received 2048 buffers.
followed by statistics. However, these statistics might not be accurate. Use the File_name.sta, File_name.raw and File_name.log files to view the session statistics.
To generate the Qtcp log files, press the ENTER key on the receiver console after the session terminates.
Readpol
Readpol displays the QoS ACS policies that are in effect within a particular domain. Readpol provides a method of identifying the policies that apply to a particular user without using the QoS ACS console or having administrator privileges. Readpol is particularly useful in tracking the propagation of PATH or RESV messages when the QoS ACS is suspected of blocking these due to restrictive policies.
Rsvpsm
Rsvpsm is an interactive tool that allows the user to query the status of RSVP sessions on a remote computer. Information available by use of Rsvpsm includes all PATH state blocks, RESV state blocks, and Traffic Control state blocks maintained by a remote host.
This tool can be used to track complex RSVP problems spanning multiple hosts.
Qossp.aid, Rapilib.aid
Qossp.aid and Rapilib.aid generate diagnostic output from the RSVP SP. These tools are particularly useful for tracking problems with an application's use of the QoS API, or with the RSVP SP itself.
To enable RSVP SP logging, add the registry entry EnableDebugAid to the following subkey:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\RSVP \Parameters
with a data type of REG_DWORD.
To enable RSVP SP debugging related to an application's use of the API, set the least significant bit of the value (bit 0) to 1.
To enable diagnostic output regarding the internal functioning of the RSVP SP, set the 2nd least significant bit of the value (bit 1) to 1.
Use Computer Management to restart the RSVP service in order to initiate RSVP SP logging.
The RSVP SP logs are stored in the directory %windir%\system32\logfiles. Files are generated for each application that makes use of the RSVP SP. Log files named QoSSP.aid.<XXXX> are generated when bit 0 of the registry value is set to 1 Log files named rapilib.aid.<XXXX> are generated when bit 1 is set to 1. In each case, <XXXX> is the process ID of the application.
Ttcp
Ttcp is a noise generation tool. The effects of QoS are very noticeable when resources are scarce (some part of the network is congested). To test QoS deployments, it is helpful to artificially congest a network in a controlled manner by generating multiple simultaneous conversations, and generating traffic with a packet size distribution that mimics the traffic pattern in your production network.
Ttcp generates a single UDP or TCP session between two hosts. Buffer size, number of buffers, ports used, and other miscellaneous parameters can be set and controlled. It is not possible to control the rate at which the transmitter sends (other than by using the QoS Packet Scheduler and Tcmon to create a shaped flow for the Ttcp traffic). A single conversation is generated for each instance of Ttcp. Multiple conversations can be established by invoking multiple instances of Ttcp.
To induce Ttcp to drive the network more aggressively, invoke it by use of the -a and -c options.
Tracert
Tracert determines the route to a destination by sending Internet Control Message Protocol (ICMP) echo packets with varying Time to Live (TTL) values. Each router along the path is required to decrement the TTL on a packet by at least 1 before forwarding it. When the TTL on a packet reaches 0, the router is supposed to send back an ICMP Time Exceeded message to the source system. The Tracert usage is:
tracert [-d] [-h <maximum_hops>] [-j <computer-list>] [-w <time-out>] <target_name> <receiver IP address>
Tracert Parameters
-d
Specifies not to resolve addresses to computer names.
-h <maximum_hops>
Specifies maximum number of hops to search for target.
-j <computer-list>
Specifies loose source route along <computer-list>.
-w <time-out>
Waits the number of milliseconds specified by <time-out> for each reply.
<target_name>
Name of the target computer.
<receiver IP address>
Causes the sending host to print the IP addresses for a single interface on each router that exists along the path from sender to receiver. This list is helpful in identifying nodes that might be dropping or blocking RSVP messages or data.
Additional Resources
For more information about QoS RFCs, Internet Drafts, and other QoS-related links, see the International Engineering Task Force (IETF) link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources.
The following Internet Drafts relate to QoS:

Providing Integrated Services Over Low-Bit-Rate Links

SBM (Subnet Bandwidth Manager): A Proposal for Admission Control Over IEEE 802-Style Networks

A Framework for Providing Integrated Services Over Shared and Switched IEEE 802 LAN Technologies

Integrated Services over IEEE 802.1D/802.1p Networks

Integrated Service Mappings on IEEE 802 Networks

RSVP Cryptographic Authentication

RSVP Extensions for Policy Control

Partial Service Deployment in the Integrated Services Architecture
The following RFCs relate to QoS:

RFC 2205: Resource Reservation Protocol (RSVP) Version 1 Functional Specification

RFC 2207: RSVP Extensions for IPSEC Data Flows

RFC 2208: Resource Reservation Protocol (RSVP) Version 1: Applicability Statement: Some Guidelines on Deployment

RFC 2209: Resource Reservation Protocol (RSVP) Version 1: Message Processing Rules

RFC 2210: The Use of RSVP with IETF Integrated Services

RFC 2211: Specification of the Controlled-Load Network Element Service

RFC 2212: Specification of Guaranteed Quality of Service
